

IS009221912B2

(12) United States Patent

Haegel et al.

(10) Patent No.: US 9,221,912 B2

(45) **Date of Patent:** *Dec. 29, 2015

(54) ANTIBODY AGAINST THE CSF-1R

(71) Applicant: **Transgene S.A.**, Illkirch Graffenstaden

(FR)

(72) Inventors: **Hélène Haegel**, Strasbourg (FR);

Christine Thioudellet, Strasbourg (FR); Michel Geist, Brumath (FR); Benoit

Grellier, Strasbourg (FR)

(73) Assignee: Transgene S.A., Illkirch Graffenstaden

(FR)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 252 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/932,285

(22) Filed: Jul. 1, 2013

(65) Prior Publication Data

US 2014/0057972 A1 Feb. 27, 2014

Related U.S. Application Data

- (62) Division of application No. 12/922,441, filed as application No. PCT/EP2009/001733 on Mar. 11, 2009, now Pat. No. 8,604,170.
- (60) Provisional application No. 61/043,884, filed on Apr. 10, 2008.

(30) Foreign Application Priority Data

Mar. 14, 2008 (EP) 08360005

(51) Int. Cl.

C07H 21/04 (2006.01) **C07K 16/28** (2006.01) A61K 39/00 (2006.01)

(52) U.S. Cl.

CPC *C07K 16/2866* (2013.01); *A61K 2039/505* (2013.01); *C07K 2317/24* (2013.01); *C07K 2317/56* (2013.01); *C07K 2317/565* (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,107,045 A *	8/2000	Koren et al 435/7.1
2005/0059113 A1	3/2005	Bedian et al.
2005/0245471 A1	11/2005	Balloul et al.
2009/0317403 A1	12/2009	Aharinejad et al.
2011/0178278 A1	7/2011	Haegel et al.

FOREIGN PATENT DOCUMENTS

CA	2090453 A1	1/1993
EP	1033401 A2	9/2000
EP	1488792 A2	12/2004

JΡ	2005-525314 A	8/2003
WO	WO 01/30381 A2	5/2001
WO	WO 03/059395 A2	7/2003
WO	WO 2005/005638 A2	1/2005
WO	WO 2005/068503 A2	7/2005
WO	WO 2005/070966 A2	8/2005
WO	WO 2008/021290 A2	2/2008
WO	WO 2009/026303 A1	2/2009
WO	WO 2009/112245 A1	9/2009

OTHER PUBLICATIONS

Notification of Reasons for Rejection for Japanese Patent Application No. 2010-550081, mailed Nov. 12, 2013, including translation (7 pages)

Ashmun et al., "Monoclonal Antibodies to the Human CSF-1 Receptor (c-fins Proto-Oncogene Product) Detect Epitopes on Normal Mononuclear Phagocytes and on Human Myeloid Leukemic Blast Cells," Blood, 73(3): 827-837 (1989).

Bendig, M.; "Humanization of Rodent Antibodies by CDR Grafting"; Methods: A Companion to Methods in Enzymology; No. 8; 1995; pp. 83-93.

Colman, P.M.; "Effects of amino acid sequence changes on antibodyantigen interactions"; Research in Immunology; No. 145, 1994; pp. 33-36

Dewar et al., "Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib," Blood, 105: 3127-3132 (2005).

Genbank Accession No. BAB22154, Version GI: 12832551, Oct. 6, 2010

Hattersley, G. et al.; "Human Macrophage Colony-Stimulating Factor inhibits Bone Resorption by Osteoclasts Disaggregated From Rat Bone"; J. Cell. Physiol.; No. 137; 1988; pp. 199-203.

Hamilton, "Colony stimulating factors in inflammation and autoimmunity," Nature Reviews Immunology, 8: 533-544 (2008).

Hermanson, G.T., "Bioconjugate Techniques," 1st edition, Academic Press, Inc., 1996, p. 456.

Kitaura et al., "M-CSF mediates TNF-induced inflammatory osteolysis" J. Clinical Investigation, 115(12):3418-3427 (2005).

Le Meur et al., "Macrophage accumulation at a site of renal inflammation is dependent on the M-CSF/c-fms pathway," J. Leukoc. Biol., 72: 530-537 (2002).

Lin et al., "Discovery of a Cytokine and its Receptor by Functional Screening of the Extracellular Proteome," Science, 320: 807-811 (2008).

Lugovskoy et al., "7th Annual European Antibody Congress 2011: Nov. 29-Dec. 1, 2011, Geneva, Switzerland," mAbs, 4(2), pp. 134-152 (Mar./Apr. 2012).

Paul, W.; "Fundamental Immunology"; 3rd Edition; 1993; pp. 292-295.

Roussel et al., "Mouse NIH 3T3 cells expressing human colonystimulating factor 1 (CSF-1) receptors overgrow in serum-free medium containing human CSF-1 as their only growth factor," PNAS USA, 86: 7924-7927 (1989).

(Continued)

Primary Examiner — Hong Sang (74) Attorney, Agent, or Firm — Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P.

(57) ABSTRACT

The present invention provides antibodies specific for the CSF-1R, compositions comprising said antibodies and methods of treatment using such compositions.

19 Claims, 18 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Rudikoff, S. et al.; "Single amino acid substitution altering antigenbinding specificity"; Proc. Natl. Acad. Sci. USA; vol. 79, No. 6; Mar. 1982; pp. 1979-1983.

Sherr, "Colony-Stimulating Factor-1 Receptor," Blood, 75(1): 1-12 (1990).

Sherr et al., "Inhibition of Colony-Stimulating Factor-1 Activity by Monoclonal Antibodies to the Human CSF-1 Receptor," Blood, 73(7): 1786-1793 (1989).

Toh et al., "Colony Stimulating Factor 1 Receptor Inhibition Has Anti-Inflammatory and Potent Early Onset Bone and Cartilage Protective Effects" (Abstract), Arthritis Rheum, 63 Suppl. 10: 1140 (2011).

International Search Report and Written Opinion mailed Sep. 9, 2009, for Application No. PCT/EP2009/001733, filed Mar. 11, 2009 (18 pages).

Examiner's first report on Australian Patent Application No. 2009224955, mailed Jul. 12, 2011 (4 pages).

First Office Action for Chinese Application No. 200980108967.9, mailed Oct. 15, 2012, including translation (15 pages).

Communication pursuant to Article 94(3) EPC, mailed Dec. 19, 2012, for EP Application No. 09 719 048.2 (5 pages).

Office Action dated Nov. 28, 2012 issued in Russian Patent Application No. 2010141584.

International Search Report for Application No. PCT/EP2012/052043, mailed Jul. 19, 2012 (5 pages).

* cited by examiner

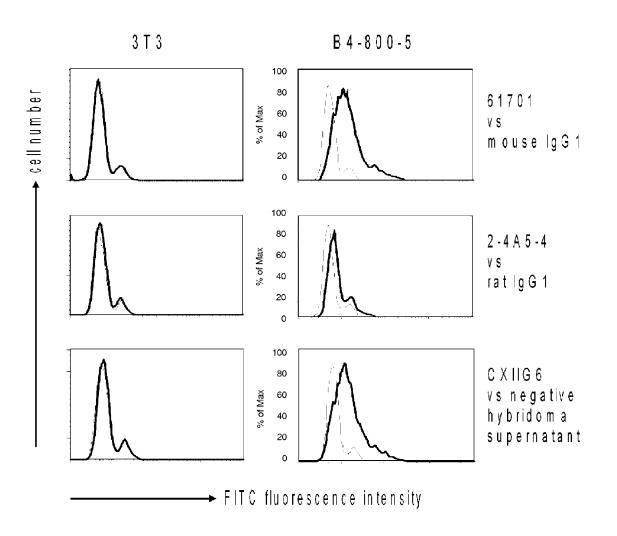
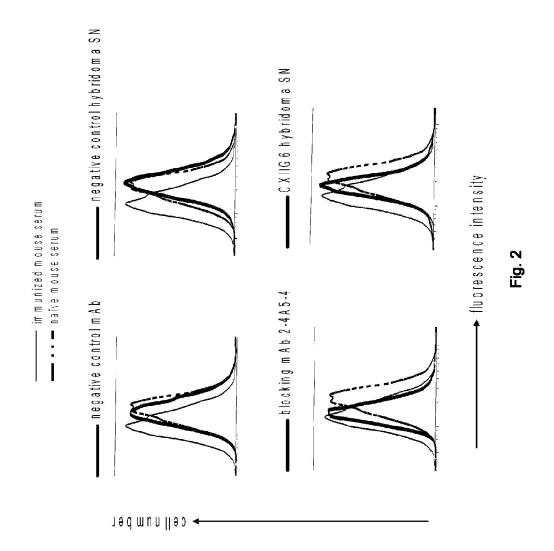
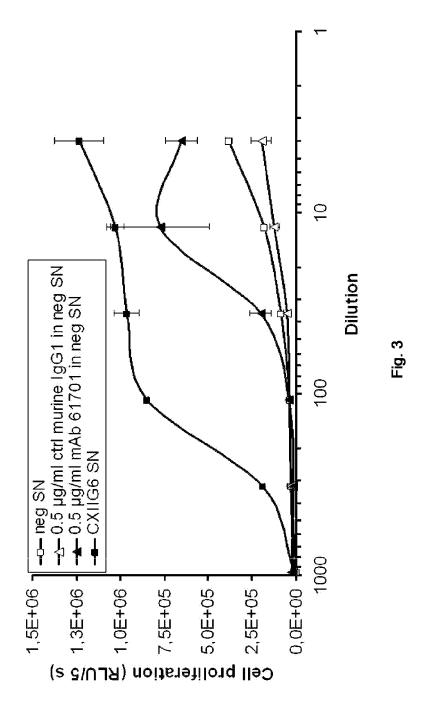
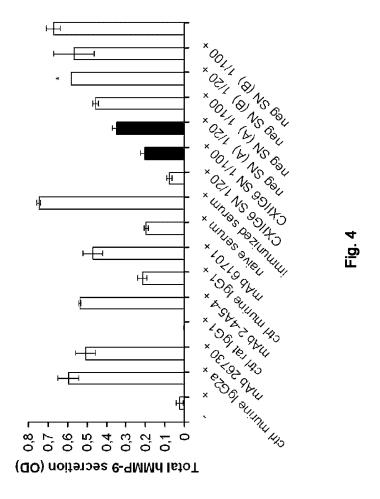
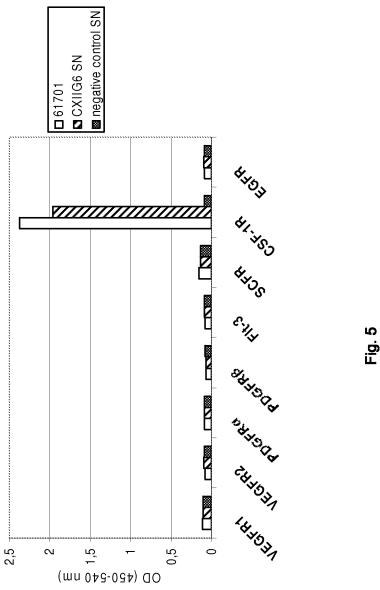






Fig. 1


```
SfiI
GGCCCAGCCGGCCCAGTGACAGACACAGACATAGAACATTCACGATGTACTTGGGACTGA 60
                                   MYLGLN
ACTATGTATTCATAGTTTTTCTCCTAAATGGTGTCCAGAGTGAAGTGAAGCTTGAGGAGT 120
 Y V F I V F L L N G V Q S E V K L E E S
CTGGAGGAGGCTTGGTGCAGCCTGGAGGATCCATGAAACTCTCTTGTGCTGCCTCTGGAT 180
 G G G L V Q P G G S M K L S C A A S G F
TCACTTTTAGTGACGCCTGGATGGACTGGGTCCGCCAGTCTCCAGAGATGGGACTTGAGT 240
 T F S D A W M D W V R Q S P E M G L E W
GGGTTGCTGAAATTAGAAGCAAAGCTAATAATCATGCAACATTCTATGCTGAGTCTGTGA 300
 V A E I R S K A N N H A T F Y A E S V K
AAGGGAGGTTCACCATCTCAAGAGATGATTCCAAAAGTAGTGTCTACCTGCAAATGAACA 360
 G R F T I S R D D S K S S V Y L Q M N S
GCTTAAGACCTGAAGACACTGGCATTTATTACTGTACCAGGGTAAAGGTAGGCTTTGACA 420
 LRPEDTGIYYCTRVKVGFDN
ACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACAACAGCCCCATCGGTCT 480
 W G Q G T T L T V S S A K T T A P S V Y
ATCCACTGGCCCCTGTGTGTGGAGATACAACTGGCTCCTCGGTGACTCTAGGATGCCTGG 540
 P L A P V C G D T T G S S V T L G C L V
TCAAGGGTTATTTCCCTGAGCCAGTGACCTTGACCTGGAACTCTGGATCCCTGTCCAGTG 600
 K G Y F P E P V T L T W N S G S L S S G
GTGTGCACACCTTCCCAGCTGTCCTGCAGTCTGACCTCTACACCCTCAGCAGCTCAGTGA 660
 V H T F P A V L Q S D L Y T L S S S V T
       XhoI
CTGTAACCTCGAGCACCTGGCCCAGCCAGTCCATCACCTGCAATGTGGCCCACCCGGCAA 720
 V T S S T W P S Q S I T C N V A H P A S
GCAGCACCAAGGTGGACAAGAAAATTGAGCCCAGAGGGCCCACAATCAAGCCCTGTCCTC 780
 STKVDKKIEPRGPTIKPCPP
CATGCAAATGCCCAGCACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAA 840
 C K C P A P N L L G G P S V F I F P P K
AGATCAAGGATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTGGATG 900
 I K D V L M I S L S P I V T C V V V D V
TGAGCGAGGATGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAACGTGGAAGTACACA 960
 S E D D P D V O I S W F V N N V E V H T
CAGCTCAGACACAAACCCATAGAGAGGATTACAACAGTACTCTCCGGGTGGTCAGTGCCC 1020
 A Q T Q T H R E D Y N S T L R V V S A L
TCCCCATCCAGCACCAGGACTGGATGAGTGGCAAGGAGTTCAAATGCAAGGTCAACAACA 1080
 PIOHODW M S G K E F K C K V N N K
AAGACCTCCCAGCGCCCATCGAGAGAACCATCTCAAAAACCCAAAGGGTCAGTAAGAGCTC 1140
 D L P A P I E R T I S K P K G S V R A P
CACAGGTATATGTCTTGCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACTCTGA 1200
 QVYVLPPPEEEMTKKQVTLT
CCTGCATGGTCACAGACTTCATGCCTGAAGACATTTACGTGGAGTGGACCAACAACGGGA 1260
 CMVTDFMPEDIYVEWTNNGK
AAACAGAGCTAAACTACAAGAACACTGAACCAGTCCTGGACTCTGATGGTTCTTACTTCA 1320
 TELNYKNTEPVLDSDGSYFM
Y S K L R V E K K N W V E R N S Y S C S
CAGTGGTCCACGAGGGTCTGCACAATCACCACGACTAAGAGCTTCTCCCGGACTCCGG 1440
 V V H E G L H N H H T T K S F S R T P G
GTAAATGAGCTCAGCACCCACAAAACTCTCAGGTCCAAAGAGACACCCACGCGCCGC 1498
 K *
```

Fig. 6

	Sti																			
GGC	CCAG	CCG	GCC	'GGA	GTC.	AGC	CTC	ACA	CTG	ATC	ACA	CAC	AGA						_	60
														M	S	V	P	Т	Q	
							ama	~~~			m a a		T TO C		~~		C 7 III	~~~	т.	100
AGGT																			_	120
V	L	G	L	L	L	L	W	L	Т	D	А	R	C	ט	I	Q	M	T	Q	
				~~-									~~~					T 00	T. T.	100
AGTO																				180
s	P	Α	S	L	S	V	S	V	G	E	T	V	T	I	T	С	R	A	S	
				~ ~			T 00	- m-c		m a n	~~	~ n n	7.07	~~~		7 m c		m < n	~~	040
GTG																				240
E	N	I	Y	s	N	L	Α	W	Y	Q	Q	K	Q	G	K	S	P	Q	L	
				m a a				7.00		mac	m 0.11							~~~	т.	200
																				300
L	V	H	Α	A	T	N	Т	A	ט	G	V	P	S	ĸ	F	S	G	S	G	
C 7 III C	77.00	~~~	7 O 7	~m n	mma		~ ~ ~	C 7 II		C 7 C		1001	СШС	·m~ »	7 (7	mmm	m~~	~~~	an an	260
GATO							_		-											300
s	G	T	Q	Y	S	L	ĸ	Ι	N	S	ш	Q	S	E	D	F	G	S	Y	
7\ (T) (T) 7	CITIC	m C n	n ~ n	mmm	mmc	ccc	m n 🔿	יייירי	ייייכר	C N C	· C m r		mcc	יזיככ	· C 7 C	יר א א		CCA	77.77	420
ATTA					TIG W	ამამა G	TAC T	P	R.	GAC T	म	G	G.	AGG G	T.	CAA K	T.	GGA E	AA I	420
Y	С	Q	H	F	W	G	T	P	R	т	r	G	G	G	Т	Λ.	ь	E	_	
m < 7 7	1700	ccc	m C 7	mcc	mcc	700	7 7 C	men	יח תר	יר א וז	Cmn		יז ככ	י חיית רי	· C 7 C	יחירא	CCN	Cmm	7\7\	480
	AACG R			A.TGC		ACC P						P			.CAG S	E E	AJĐI O	L L	AA. T	400
М	А	А	D	A	A	F	1	V	3	1	Е	E	F	۵	3	Ea	V	יד	1	
CATO	ישרר	700	mCC	CTC	יאכיתי	CCT	CTC	Cmu	, _ _	יר א א	C N T	CTT	ירייז	ccc	יר א א	ת כי ת	CNT	ר א א	mC	540
	JIGG G	AGG G	IGC A			V.				N		F				AGA D	I	N	V	540
S	G	G	А	5	V	٧	C	r	ш	IN	14	r	1	r	V	ט	1	IN	٧	
mc n z	\ CTC	C N N	C № TT	ייייר ז	TO C	יכאכ	TO N	אככ	יא ריא	ת ת ת	TO C	сст	ССТ	ית א	CNC	יחיים	C N C	יייכא	тC	600
K		GAA K	I AU.	D	G	S	E	R	0	N		V		N.	S	W	T	D	.10	000
Λ	VV	Λ	Т	ט	G	ی	Ē	Κ	Q	IN	G	V	П	14	3	VV	1	ט	Q	
7,000	\	CNN	$\nabla \nabla \nabla$	CNC	CAC	יריייא	CNC	יר א יו	ich c	יכאכ	CAC	יככית	יראר	יפייםי	יכזיר	יר א א	CCA	CCD	СT	660
D		K	AGA D	S	T	Y.CIA	S	M	S	S	T	L	T	L	Т	K	D	E	Y	000
ע	3	K	ט	ی	1	1	3	1-1	S	3	1	ш	1	ш	1	11	ט	ت	_	
7.00.07	י א כי כי	$\Lambda \subset \Lambda$	ת אינים	CAC	יריים א	መ አ 🔿	CTC	יייירי	بخرر	יראכ	יייירי	ר א א	CNC	י זי חיי ר	י א א ר	ייייי	יאככ	יר א ידי	TO.	720
AIGA E	AACG R	ACA H	.IAA	S	Y	T	.CTG					K		S	AAC T	S	P	T	V	120
E	А	п	IN	3	1	1	C	Ľ	Α	_	11	11	1	ی	+	5	Ľ		V	
Tr C To 7	$^{\circ}$	\sim mm	~ 7 7	ראר	יכאא	ጥርአ	CTC	י הייהי	CAC	מי א מי	א א כ	יכיייר	ירייוכ	מ א מ	ccc	יראר	ירזר	יכאכ	CTP.	788
K		F	N	R	N N	E	C	*	1GAC	MCF	יייייי	GIC		IAGE.	1000	CAC	CAC	CAG		700
r	ی	Ľ	IA	L	IN	£	C													
7.7	otI																			
GCG		C 7	Qρ																	
300		· /	00																	

Fig. 7

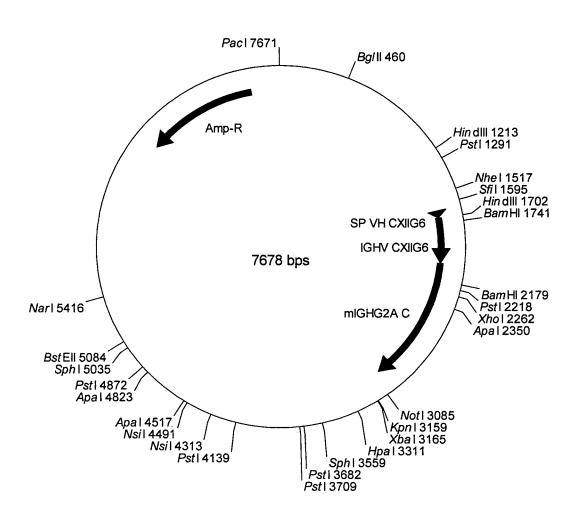


Fig. 8

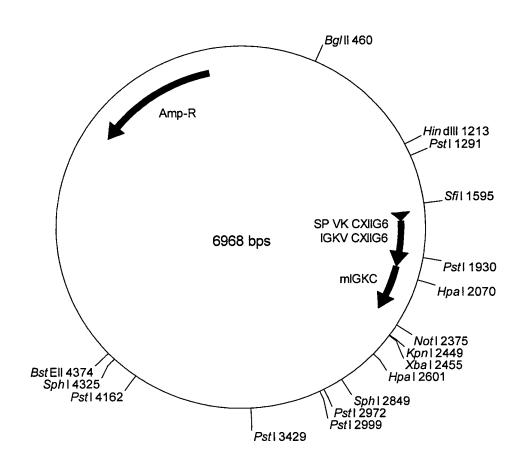


Fig. 9

pOptiVEC™

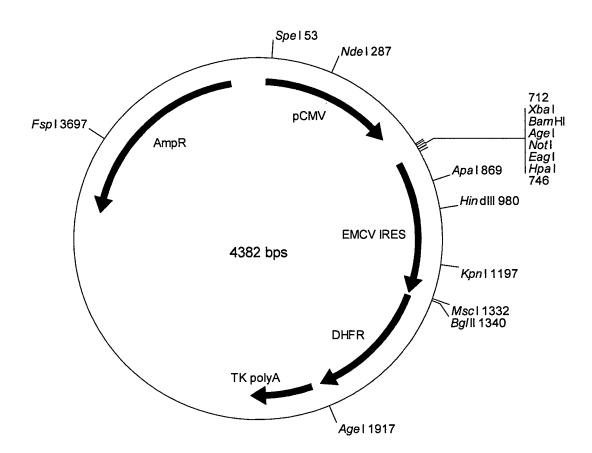


Fig. 10

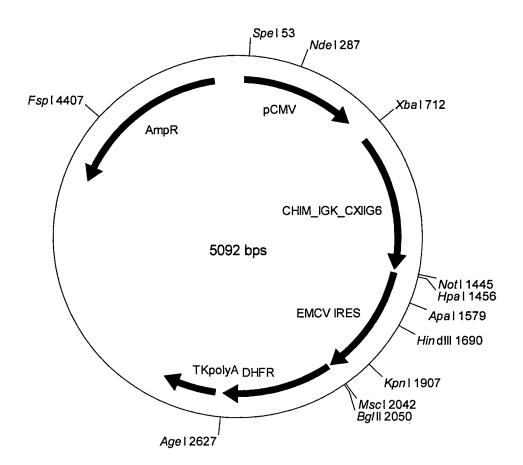


Fig. 11

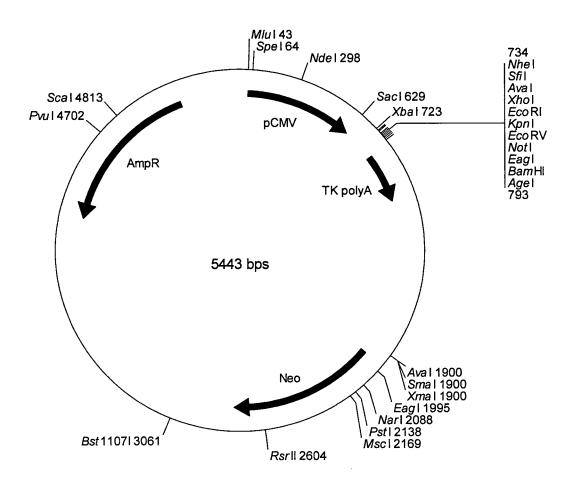


Fig. 12

Dec. 29, 2015

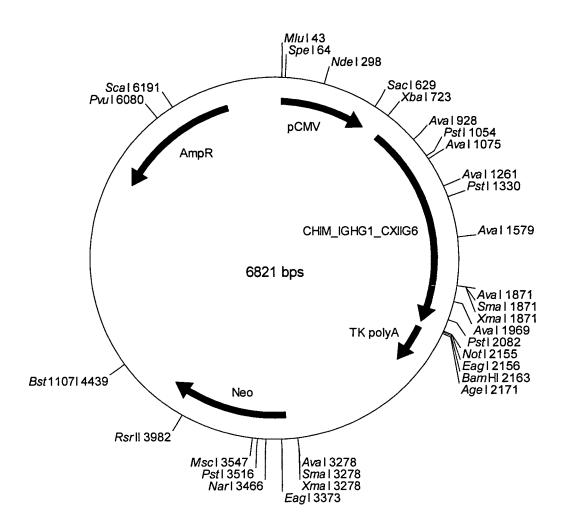
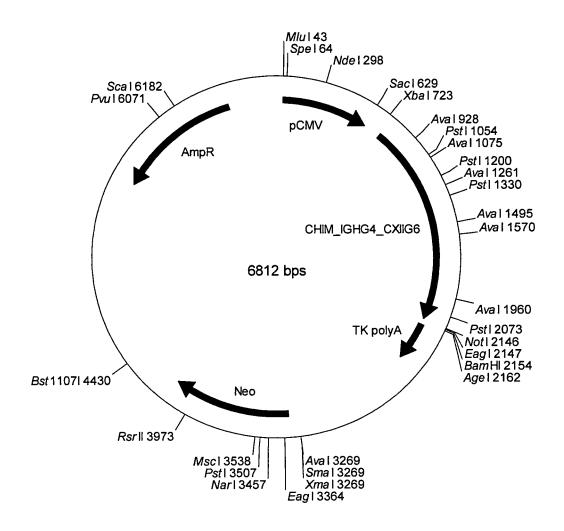
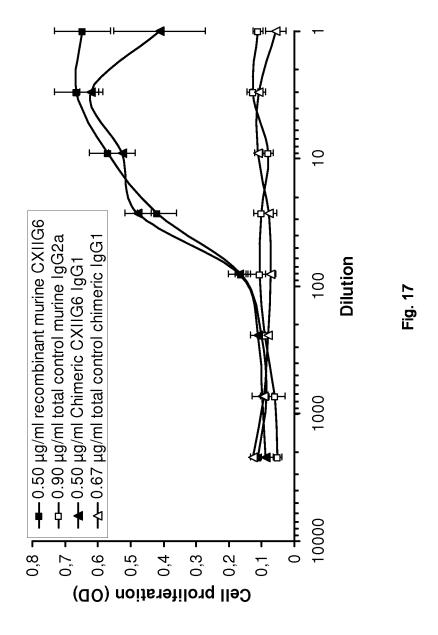


Fig. 13




Fig. 14

				. عمر	_		. عد	. عمر	. بمر				۰.			
	G1080	G100Q	G100Q	G100Q	G109Q	G108Q	C1080	G100Q	G100Q	GIOOQ	G100Q		C1080		G100Q	
	$\overline{1588}$	S85T	S85T	S85I	SSSI	\$35T			I588	S85I	SSSI		885T		IS88	
	G84A	G84A	G54A						G84A				D565 Q76D S72T K74T N76S S80P G84A		D568 Q70D S72I K74I N768 S88P G84A	
	880P				888P					S88P		\$80P	\$50P	\$50P	880P	
	\$92N	N76S	N768	N768	N768	N768	\$94X		894N	N76S	N76S	N768	N76S	\$92N	N76S	
	K74T	K74T	K74T N76S	K74I	K74T	K74T			E74I	K74I	K:4I	X 24T N768 S80P	K74T	M74T N76S S80P	K74T	3%
	\$72T	STEE	STIT	S72I	STEE	872T			STIE	STIL	872I		S72T		372T	ove 2
9	Q3/6D	Q70D	A55E D568 Q70D S72T	$\overline{\text{N53R}} A \overline{\text{55E}} \mathbf{D56S} \mathbf{Q70D} \overline{\text{572I}} \overline{\text{K74I}} \mathbf{N76S}$	A55E B56S Q78D S72T X74T N76S S88P	<u>A55E</u> D56S Q70D <u>872T</u> <u>X74T</u> N76S	Q7@D		D568 Q76D S73I K74I N76S	D568 Q70D S72I K74I N76S	D568 Q70D 872I X 24I N768		Q76D		Q20D	ag pau
Š ₹	D56S	D568	D568	D56S	D56S	D56S	D56S Q70D		D56S	D568	D568		D56S		D568	ndədir
ds₀ m	ASSE	ASSE	ASSE	ASSE	A55E	A55E										0 %, u
no aci	NSSR	N53R		NS3R		,										ove 5(
ad ami	749Y	149Y		H49Y												iiity ab
Substituted amino acids, in VL CXIIG	V43L	Q45K V43L H49Y N53R A55E D56S Q70D S72T X74T N76S	V43L						V4SL				V48L		V43L	coessit
ű	S48A Q45K V43I H49Y N33R A55E D568 Q70D S72I K74I N76S S80P G84A S85I	Q45K	Q45K	Q45K	Q45K	Q45K	Q45E		Q45K V43L	Q45K	Q45K		Q4%K		Q40P S43A Q45K V43L	dvent-a
	¥848	S43A	S43A	543.4	543.4	S43A	S43.4		S43A	543.4	543.4		S43.4		S43A	hairi sc
	048P				Q40P					Q40F		Q40D	O#6D	Q48P	Q40P	3-aprs a
	IISR	TISR	TISE	T18R	T18R	IISR	IISR		IISR	T18R	TISE	TISR	IISE	IISR	IISR	a refative
	E17D	E17D	E17D	E17B	E37B	E17D	E17D	E17D	E17D	E17B	E17B	E17B	E17D	E17D	E17D	-amino acids in bold have a relative side-chain solvent-accessibility above 50% undedined above 25%
	VI3A	VISA	VISA						VISA			VISA	V134	V13A	VI3A	oq uj s
	868	A98	A98	¥98	A9S	498	86¥		A98	A98	398	A98	364	A98 V13A	A98 VI3A	හ හෝජ
	pTG17896	pTG17897	pTG17899	pTG17900	pTG17961	pTG17902	pTG17903	pTG17904	pTG17905	pTG17906	pTG17907	pTG17947	pTG17948	pTG17949	K15 pTC17950	amm
	K.1	X	K3	K.4	828	8.6	K7	K3	K9	K10	KII	K112	K13	K14	K15	

Fig. 15

	L114V		L114V	L114V		11147	L114V		L114V	1114V		L114V	1114V		L1143	L1145		11147		L114V	L114V	L114V	L114V	L114V	L114V	1114V	L114V
	M18L K19R <u>840A</u> E42G M44K A49G E50R F61E E64A <u>S73N</u> V61L R89K P90T G94A <u>195V</u> T1131	T113L		Tiiil	Tiiit		T113L	THIST		THE	T113L		IIII	HHI		T113L	THE			T113L L114V	THE	THE	THE	THE	THIST	THE	TH3L L114V
•	\overline{M}	<u>195V</u>	\overline{M}	$\overline{\Lambda}SGI$	<u>VS91</u>	ASGI	Λ S6I	$\overline{\Lambda}$ SGI	ASSI							$\overline{95V}$	$\overline{\Lambda 56I}$	<u> 1957</u>				195V			$\Lambda S6I$		$\overline{\Lambda}$ S6I
	G94A	G94A	G94A	G94A	G84A	G94A										G94A	G94A	G94A									
•	1964	P96T	Poor																P964		P984	P964		P964	P964	P90T	1964
	R89K	RS9K		R89K	R89K	RS9K	RS9K	R89K	R89K	R89K	RS9K	R89K	R89K	R89K	RS9K	R89K	R89K	R89K		R89K	R89K	R89K	RS9K	R89K	R89K P98A	R89K	R89K
ę.	VS1E 1	VEIL I	VSIE 3	VRIE 1	VEIL R89K	VEIL 3		, m,]							VSIE 1	V81L 3	VEIL R89K]]]	F-1	
¥.	N628	N678	879N	879N V81L R89K	N.62S	E64A S79N V61L R89K	N628	879N	NELS							S79N	N618	N528									
≟. > €	E64.4	F61E E64A S79N	E64A	E644	E64.4	E64A	E644	E64.4	E64.4	E64A	E64A	E644				E644	E64.4	E64A		E644	E64.4	E64A					
Sports	FS1E 1	F61E 1	F61E]	-	1		-	F-1	-]]					
STEEL STEEL	ESOR	ESGR	E50R	ESOR	ESOR	ESOR																					
Substituted armino acids* in VM CXIII.36	\$49G	A49G E50R	3.49G	A49G E50R	\$49G	149G										A49G	149G	A49G									
Saps	143K	1+3K	143K /	143K	143K	1+3K	143K	143K	143E	143K	143K	143K					143K	143K		143E	343K	143K	143K	143K	143K	143K	143K
	42G A	E42G M43K	<u>S40A</u> E42G 3143K A49G E50R F61E E64A <u>879N</u> V81L R89K	E42G M43K	E42G M43K A49G E50R	840A E42G M43K A49G E50R	E42G 3143K	E42G M43K	E42G 3443K	E42G 3443K	E42G 3443K	E42G 3443K				E42G M43K	E42G 3143K A49G	E42G M43K		E42G M43K	E42G 3343K	E42G M43K	E42G 3443K	E+2G M43K	E42G M43K	E42G 3343K	E42G 3343K
	40A E	840A E	40A E	S40A E	S40A E	40A E	S40A E	S40A E	S40A E	E	4	4				S40A E	S-40A E	S40A E		E	E	S40A E	E	4	840A E	[4]	S40A E
•	39R S			K19R S		19R S	K19R S	K19R S	$ \mathbf{K}19\mathbf{R} $	K19R	K19R	K19R	K19R	K19R	K19R	K19R S				19R	REIN	- "	19R	19E	-	19R	
	18E K	MISE KI9R	MIST KIOR	MISE K	MISE KISR	MISE KIOR	K	24	4	X	X	X	14	<u> </u>	K	M181 K	MISE KISR	MIST KIOR	M13E	M18E K19R	MISE K	MISL KISR	M13L K19R	MISE K19R	MISE KISE	MIST KIOR	MISE KI9R
	ESV M	ESY M		ESY M			ASI	.33	ESV	12A	ESV	1.				ESV M			_	-			M AST			ESV M	-
	K3Q E	K3Q E	K3Q ESV	K3Q E	K3Q ESV	K3Q ESV	K3Q E	K3Q ESY	K3Q E	K3Q E5V	K3Q E	K3Q E				K3Q E	K3Q E5V	K3Q E5V	K3Q ESV	K3Q ESV	K3Q E5V	K3Q E5V	K3Q E	K3Q ESV	K3Q ESV	K3Q E	K3Q ESV
													_	_													
	pTG17870	pTG17871	pTG17872	pTG17873	PTG17874	pTG17875	pTG17883	pTG17884	pTG17885	pTG17886	pTG17887	pTG17888	pTG17889	pTG17898	pTG17891	pTG17892	pTG17893	pTG17894	pre17943	prG17944	pTG17945	pIG17946	pTG17968	pTG17969	pTG17970	pTG17985	pre17986
	Hi	H2	H3	H4	Η٤	9H	H7	H8	H9	H10	HII	H12	H13	H14	H15	H16	H17	H18	H19	H20	HII	H22	H23	H24	H25	H26	H27

:

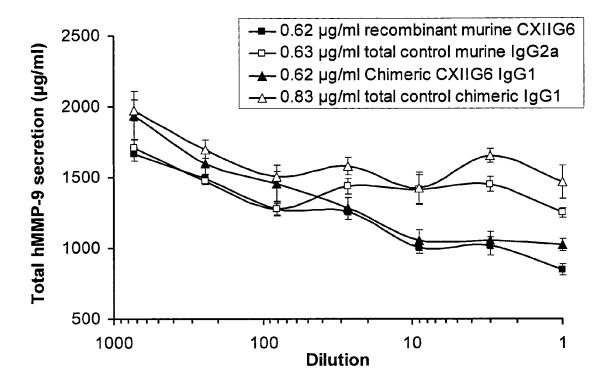


Fig. 18

ANTIBODY AGAINST THE CSF-1R

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 12/922,441, with 35 U.S.C. §371(c) date Dec. 7, 2010, now U.S. Pat. No. 8,604,170, which is a U.S. national phase application based on PCT/EP2009/001733, filed Mar. 11, 2009, which claims priority to European Application No. 08 36 10 0005.6, filed Mar. 14, 2008, and to U.S. Provisional Application No. 61/043,884, filed Apr. 10, 2008, all of which are incorporated by reference herein.

The CSF-1 (Colony-Stimulating Factor-1) is a cytokine expressed particularly by various types of cells. It is a differ- 15 entiation, growth and survival factor for cells of the mononuclear phagocyte lineage which express the receptor for CSF-1 (CSF-1R) (SHERR. Colony-stimulating factor-1 receptor. blood. 1990, vol. 75, no. 1, p. 1-12.). CSF-1R is a tyrosine kinase receptor encoded by the c-fms protoonogene 20 containing an intracellular kinase domain and a ligand-binding extracellular region organized in five immunoglobulinlike subdomains. Response to CSF-1 results in increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentia- 25 tion marker. The extent of c-fms expression is stronger than that of other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. (HUME, et al. Regulation of CSF-1 receptor expression. Molecular reproduction and development. 1997, vol. 46, no. 30 1, p. 46-52.).

In addition to cells of the mononuclear phagocyte lineage, the CSF-1R is also expressed by many types of human tumors. In breast cancer, CSF-1R expression is associated with larger tumor sizes and decreased survival (KLUGER, et 35 al. Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clinical cancer research. 2004, vol. 10, no. 1, p. 173-7.; SCHOLL, et al. Anti-colonystimulating factor-1 antibody staining in primary breast 40 275-83.). Moreover, it has been demonstrated that CSF-1 adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. Journal of the National Cancer Institute. 1994, vol. 86, no. 2, p. 120-6.). In epithelial ovarian cancer, the majority of primary tumors and metastases strongly express the CSF-1R, and metastases frequently co- 45 express CSF-1 and CSF-1R. The CSF-1R is also expressed by tumor-infiltrating macrophages (CHAMBERS, et al. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect 50 of stromal CSF-1. Clinical Cancer Research. 1997, vol. 3, no. 6, p. 999-1007.). In ovarian and endometrial cancers, Northern blot analysis shows that the vast majority of tumors coexpress CSF-1 and CSF-1R, while CSF-1R expression is only weakly detected in normal endometrial tissue samples 55 (BAÏOCCHI, et al. Expression of the macrophage colonystimulating factor and its receptor in gynecologic malignancies. Cancer. 1991, vol. 67, no. 4, p. 990-6.). In cervical carcinomas, CSF-1R expression is up-regulated both in tumor stroma and in tumor epithelium, compared with normal 60 endometrium (KIRMA, et al. Elevated expression of the oncogene c-fms and its ligand, the macrophage colony-stimulating factor-1, in cervical cancer and the role of transforming growth factor-beta1 in inducing c-fms expression. Cancer res. 2007, vol. 67, no. 5, p. 1918-26.). In renal carcinoma, 65 infiltration of tumor-associated macrophages expressing high levels of CSF-1R is associated with tumor progression

2

(HEMMERLEIN, et al. Expression of acute and late-stage inflammatory antigens, c-fms, CSF-1, and human monocytic serine esterase 1, in tumor-associated macrophages of renal cell carcinomas. Cancer immunology, immunotherapy 2000, vol. 49, no. 9, p. 485-92.). CSF-1R is expressed by close to 100% prostatic intraepithelial neoplasia or cancer samples (IDE, et al. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc. Natl. Acad. Sci U.S.A. 2002, vol. 99, no. 22, p. 14404-9.). CSF-1R expression has also been detected in acute myeloblastic leukemias and B-cell chronic lymphocytic leukemias (RAMBALDI, et al. Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells. Journal of Clinical Investigation. 1988, vol. 81, no. 4, p. 1030-5.).

Work done by immunohistochemistry and in situ hybridization has demonstrated specificity of the expression of CSF-1 in invasive breast cancer cells while such production is not observed in intra-canal or non-invasive tumor cells (SCHOLL, et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. Journal of the National Cancer Institute. 1994, vol. 86, no. 2, p. 120-6.; TANG, et al. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes?. Journal of cellular biochemistry. 1992, vol. 50, no. 4, p. 350-6.). Production of CSF-1 by invasive tumor cells correlates with its increase in concentration in the plasma of patients, where it can exceed 1000 pg/ml compared with less than 300 pg/ml in normal subjects. High serum concentration correlates with advanced stages of the disease and unfavorable short term prognostic (SCHOLL, et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. British journal of cancer. 1994, vol. 69, no. 2, p. 342-6.; SCHOLL. Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast cancer research and treatment. 1996, vol. 39, no. 3, p. stimulates mobility and invasiveness of tumor cells (DOR-SCH, et al. Macrophage colony-stimulating factor gene transfer into tumor cells induces macrophage infiltration but not tumor suppression. European journal of immunology. 1993, vol. 23, no. 1, p. 186-90.; WANG, et al. Induction of monocyte migration by recombinant macrophage colony-stimulating factor. Journal of immunology. 1988, vol. 141, no. 2, p. 575-9.; FILDERMAN, et al. Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptorpositive carcinoma cell lines. Cancer res. 1992, vol. 52, no. 13, p. 3661-6.).

CSF-1 also has a chemotactic effect on precursors of the myeloid line, which facilitates infiltration of monocytes in the tumor. However, the presence of these monocytes is not sufficient to observe destruction of the tumor by the immune system. (DORSCH, et al. Macrophage colony-stimulating factor gene transfer into tumor cells induces macrophage infiltration but not tumor suppression. European journal of immunology. 1993, vol. 23, no. 1, p. 186-90.). It appears that at the high serum contents commonly found in patients suffering from tumors of the breast, ovaries or pancreas, CSF-1 orients the differentiation of these monocytes into macrophages and not into dendritic cells capable of presenting tumoral antigens and thus initiating an efficient cytotoxic immune response directed against tumor cells (SCHOLL. Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study.

Breast cancer research and treatment. 1996, vol. 39, no. 3, p. 275-83.; BARON, et al. Modulation of MHC class II transport and lysosome distribution by macrophage-colony stimulating factor in human dendritic cells derived from monocytes. Journal of cell science. 2001, vol. 114, no. pt5, p. 5 999-1010.).

CSF-1 is also essential for proliferation and differentiation of osteoclasts. (CECCHINI, et al. Role of CSF-1 in bone and bone marrow development. Molecular reproduction and development. 1997, vol. 46, no. 1, p. 75-83.). Osteoclasts are multinucleated cells that express the CSF-1R, deriving from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders 15 such as osteoporosis, hypercalcemia of malignancy, rheumatoid arthritis, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. (BRUZZANITI, et al. Molecular regulation of 20 osteoclast activity. Reviews in endocrine. 2006, vol. 7, no. 1-2, p. 123-39.). For example, patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and a high risk of fractures due to tumor-driven bone loss (osteolysis), which is caused by 25 increased osteoclast activity (CICEK, et al. Breast cancer bone metastasis and current small therapeutics. Cancer metastasis reviews. 2006, vol. 25, no. 4, p. 635-44.). It has been shown that osteolysis is linked to a high level of circulating CSF-1 (KITAURA, et al. The journal of clinical inves- 30 tigation. M-CSF mediates TNF-induced inflammatory osteolysis. 2005, vol. 115, no. 12, p. 3418-27.).

The CSF-1 pathway is also involved in mediating intestinal inflammation in disease such as Inflammatory bowel disease (MARSHALL, et al. Blockade of colony stimulating factor-1 35 (CSF-I) leads to inhibition of DSS-induced colitis. Inflammatory bowel diseases. 2007, vol. 13, no. 2, p. 219-24.), in mediating macrophage proliferation during acute allograft rejection (JOSE, et al. Blockade of macrophage colonystimulating factor reduces macrophage proliferation and 40 accumulation in renal allograft rejection. American journal of transplantation. 2003, vol. 3, no. 3, p. 294-300. and in HIV-1 replication in infected macrophage (KUTZA, et al. Macrophage colony-stimulating factor antagonists inhibit replication of HIV-1 in human macrophages. Journal of immunology. 45 2000, no. 164, p. 4955-4960.

For these reasons, the inhibition of the CSF-1 activity by various compounds has been proposed for the treatment of cancer and bone degradation.

BACKGROUND ART

WO 01/30381 relates to the use of inhibitors of the CSF-1 activity in the production of medicaments for the treatment of tion of the CSF-1 activity are the suppression of the CSF-1 activity itself, and the suppression of the activity of the CSF-1R. Neutralizing antibodies against CSF-1 or its receptor are preferred as the inhibitors of CSF-1 activity.

WO 03/059395 describes combination products compris- 60 ing a substance capable of inhibiting CSF-1 activity and a substance having a cytotoxic activity for the treatment of

WO 2005/068503 discloses a method for preventing and treating osteolysis, cancer metastasis and bone loss associated with cancer metastasis by administering an antibody against CSF-1 to a subject.

EP 1488792 A relates to the use of mono- and/or bicyclic aryl or heteroaryl quinazoline compounds which exhibit selective inhibition of differentiation, proliferation or mediator release by effectively inhibiting CSF-1R tyrosine kinase activity. This application also relates to the use of such compounds for the manufacture of a medicament for inhibiting abnormal cell proliferation.

US 2005059113 relates to antibodies and antigen-binding portions thereof that specifically bind to aCSF-1. The invention also relates to human anti-CSF-1 antibodies and antigenbinding portions thereof. This application invention also provides gene therapy methods using nucleic acid molecules encoding the heavy and/or light immunoglobulin molecules that comprise the human anti-CSF-1 antibodies.

DISCLOSURE OF INVENTION

The present invention relates to an antibody that specifically binds to the CSF-1R.

As used throughout the entire application, the terms "a" and "an" are used in the sense that they mean "at least one", "at least a first", "one or more" or "a plurality" of the referenced components or steps, unless the context clearly dictates otherwise. For example, the term "a cell" includes a plurality of cells, including mixtures thereof.

The term "and/or" wherever used herein includes the meaning of "and", "or" and "all or any other combination of the elements connected by said term".

The term "about" or "approximately" as used herein means within 20%, preferably within 10%, and more preferably within 5% of a given value or range.

As used herein, the terms "comprising" and "comprise" are intended to mean that the kits of parts, products, compositions and methods include the referenced components or steps, but not excluding others. "Consisting essentially of when used to define products, compositions and methods, shall mean excluding other components or steps of any essential significance. Thus, a composition consisting essentially of the recited components would not exclude trace contaminants and pharmaceutically acceptable carriers. "Consisting of" shall mean excluding more than trace elements of other components or steps.

As used herein, the term "specifically binds to" refers to a binding reaction which is determinative of the presence of a target protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated assay conditions, the antibody according to the invention bind preferentially to at least part of the CSF-1R and do not bind in a significant amount to other components present in a test sample. Specific binding between the antibody according to the invention and the CSF-1R target means that the binding affinity is of at least 10³ M⁻¹, and preferably 10⁵ M⁻¹, 10⁶ M^{-1} , $10^7 M^{-1}$, $10^8 M^{-1}$, $10^9 M^{-1}$ or $10^{19} M^{-1}$

As used herein, the term "CSF-1R" refers to the human tumor diseases. The two proposed approaches for the inhibi- 55 CSF1 receptor. The human CSF-1 receptor has been sequenced and its amino acid sequence is depicted in SEQ ID

> As used herein, "antibody" or "Ab" is used in the broadest sense. Therefore, an "antibody" or "Ab" can be naturally occurring or man-made such as monoclonal antibodies (mAbs) produced by conventional hybridoma technology, recombinant technology and/or a functional fragment thereof. Antibodies of the present invention are meant to include both intact immunoglobulin molecules for example a polyclonal antibody, a monoclonal antibody (mAb), a monospecific antibody, a bispecific antibody, a polyspecific antibody, a human antibody, an animal antibody (e.g. camelid

antibody), chimeric antibodies, as well as portions, fragments, regions, peptides and derivatives thereof (provided by any known technique, such as, but not limited to, enzymatic cleavage, peptide synthesis, or recombinant techniques), such as, for example, immunoglobulin devoid of light chains (see 5 for example U.S. Pat. No. 6,005,079), Fab, Fab', F (ab')2, Fv, scFv, antibody fragment, diabody, Fd, CDR regions, or any portion or peptide sequence of the antibody that is capable of binding antigen or epitope. An antibody is said to be "capable of binding" a molecule if it is capable of specifically reacting 10 with the molecule to thereby bind the molecule to the antibody. Antibody fragments or portions may lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. Examples of antibody may be produced from 15 intact antibodies using methods well known in the art, for example by proteolytic cleavage with enzymes such as papain (to produce Fab fragments) or pepsin (to produce.F(ab')₂ fragments). See e.g., Wahl et al., 24 J. Nucl. Med. 316-25 (1983). Portions of antibodies may be made by any of the 20 above methods, or may be made by expressing a portion of the recombinant molecule. For example, the CDR region(s) of a recombinant antibody may be isolated and subcloned into the appropriate expression vector.

As used herein, the term "variable region" refers to the 25 variable region, or domain, of the light chain (VL) or heavy chain (VH) which contain the determinants for binding recognition specificity. The variable domains are involved in antigen recognition and form the antigen binding site. As used herein, the term "framework region" refers to portions of light 30 and heavy chain variable regions that are at least 85% homologous (i.e., other than the CDR's) among different antibodies in the same specie. As used herein, the term "homologous>> refers to a comparison of the amino acids of two polypeptides which, when aligned by using the Smith- 35 Waterman algorithm (SMITH, et al. Identification of common molecular subsequences. Journal of Molecular Biology. 1981, no. 147, p. 195-7.), have approximately the designated percentage of the same amino acids. For example, "85% homologous" refers to a comparison of the amino acids of two 40 polypeptides which when optimally aligned have 85% amino acid identity. The variable region of both the heavy and light chain is divided into segments comprising four framework sub-regions (FR1, FR2, FR3, and FR4), interrupted by three stretches of hypervariable sequences, or the complementary determining regions (CDR's), as defined in Kabat's database (Kabat et al., op. cit.), with the CDR1 positioned between FR1 and FR2, CDR2 between FR2 and FR3, and CDR3 between FR3 and FR4. Without specifying the particular sub-regions as FR1, FR2, FR3 or FR4, a framework region as 50 referred by others, represents the combined FR's within the variable region of a single, naturally occurring immunoglobulin chain. As used herein, a FR represents one of the four sub-regions, and FR's represents two or more of the four sub-regions constituting a framework region. The sequences 55 of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody is the combined framework regions of the constituent light and heavy chains and serves to position and align the CDR's. The CDR's are primarily responsible for 60 forming the binding site of an antibody conferring binding specificity and affinity to an epitope of an antigen. Within the variable regions of the H or L chains that provide for the antigen binding regions are smaller sequences dubbed "hypervariable" because of their extreme variability between 65 antibodies of differing specificity. Such hypervariable regions are also referred to as "complementarity determining

6

regions" or "" regions. These CDR regions account for the basic specificity of the antibody for a particular antigenic determinant structure. The CDRs represent non-contiguous stretches of amino acids within the variable regions but, regardless of species, the positional locations of these critical amino acid sequences within the variable heavy and light chain regions have been found to have similar locations within the amino acid sequences of the variable chains. The variable heavy and light chains of all antibodies each have 3 CDR regions, each non-contiguous with the others (termed L1, L2, L3, H1, H2, H3) for the respective light (L) and heavy (H) chains. The accepted CDR regions have been described by Kabat et al, 252 J. Biol. Chem. 6609-16 (1977), and CDR loops may be identified by applying these rules during an examination of a linear amino acid sequence. The rules for defining the CDR-H3 loop can vary, however (see Chapter 4, Antibody Engineering: Methods & Protocols, (Lo, ed. Humana Press, Totowa, N.J., 2004)), and the actual boundaries of some CDR-H3 loops may not be identified without experimental techniques such as circular dichroism, nuclear magnetic resonance, or X-ray crystallography. In all mammalian species, antibody peptides contain constant (i.e., highly conserved) and variable regions, and, within the latter, there are the CDRs and the so-called "framework regions" made up of amino acid sequences within the variable region of the heavy or light chain but outside the CDRs. The CDR regions can also be defined using Chothia nomenclature (CHOTHIA and LESK. Canonical structures for the hypervariable regions of immunoglobulins (1987) J Mol. Biol. 1987 Aug. 20; 196(4):901-17). Therefore, in certain embodiments, the CDRs are Kabat defined CDRs, and in other embodiments, the CDRs are Chothia defined CDRs. Regarding the antigenic determinate recognized by the CDR regions of the antibody, this is also referred to as the "epitope." In other words, epitope refers to that portion of any molecule capable of being recognized by, and bound by, an antibody (the corresponding antibody binding region may be referred to as a paratope). In general, epitopes consist of chemically active surface groupings of molecules, for example, amino acids or sugar side chains, and have specific three-dimensional structural characteristics as well as specific charge characteristics.

The term "monoclonal antibody" or "mAb" as used herein refers to an antibody that is derived from a single clone. Monoclonal antibodies can be prepared using hybridoma techniques such as those disclosed in HARLOW. Antibodies: A Laboratory manual. 2nd edition. Cold Spring Harbor: Laboratory press, 1988. and HAMMERLING, et al. Monoclonal Antibodies and T Cell Hybridomas. New York: Elsevier, 1981. p. 563-681.

As used herein, the term "human antibody" refers to an antibody having variable and constant regions derived from or closely matching human germline immunoglobulin sequences. The human antibody of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). Thus, as used herein, the term "human antibody" refers to an antibody in which substantially every part of the protein is substantially similar to a human germline antibody. "Substantially similar" refers to an antibody having a nucleic acid sequence which is at least 80, preferably 85, more preferably 90 and even more preferably 95% homologous to the nucleic acid sequence a human germline antibody.

As used herein, the term "Fab" refers to regions of antibody molecules which include the variable region of the heavy chain and light chain and which exhibit binding activity.

"Fab" includes aggregates of one heavy and one light chain (commonly known as Fab), whether any of the above are covalently or non-covalently aggregated so long as the aggregation is capable of selectively reacting with a particular antigen or antigen family. The Fab fragment is a heterodimer comprising a VL and a second polypeptide comprising the VH and CH1 domains. In a preferred embodiment the antibody is an Fab' fragment. By Fab' fragments differ from Fab fragments in that the Fab' fragment contains a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody "hinge region".

"F(ab')₂" refers to an antibody fragment obtained by the pepsin treatment of an antibody or to the equivalent protein obtained by other techniques such as recombinant technologies. F(ab')₂ fragment has two antigen-combining sites and is 15 tion binds specifically to CSF-1R and comprises: still capable of cross-linking an antigen.

"Fv" is the minimum antibody fragment that contains a complete antigen recognition and binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this con- 20 figuration that the three CDRs of each variable domain interact to define an antigen binding site on the surface of the VH VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific 25 for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

"Single-chain Fv" or "scFv" comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the scFv further com- 30 prises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding (LENNARD. Standard protocols for the construction of scFv libraries. Methods in molecular biology. 2002, no. 178, p. 59-71.).

As used herein, the term "antibody fragment" refers to one or more fragments of an antibody that retain the ability to specifically bind to the CSF-1R.

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a 40 heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another 45 chain and create two antigen-binding sites. Diabodies may bind to one ore more than one epitope. Diabodies are more fully described in POLJAK. Production and structure of diabodies. Structure. 1994, vol. 2, no. 12, p. 1121-3., HUDSON, Journal of immunological methods. 1999, vol. 231, no. 1-2, p. 177-89, and KIPRIYANOV. Generation of bispecific and tandem diabodies. Methods in molecular biology. 2002, no. 178, p. 317-31.

Various techniques have been developed for the production 55 of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies. However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and scFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the 60 production of large amounts of these fragments. Techniques for the production of antibody fragments will be apparent to the skilled in the art. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv).

As used herein "Domain Antibodies" (dAbs) consist in the 65 smallest functional binding units of antibodies, corresponding to the variable regions of either the heavy (VH) or light

(VL) chains of the antibodies. Domain Antibodies have a molecular weight of approximately 13 kDa, or less than onetenth the size of a full antibody.

As used herein, "Fd" refers to an antibody fragment that consists of the VH and CH1 domains.

The term "antibody" or "Ab" also refers to other antibody fragment well known to the one skilled in the art, for example those described in HOLLIGER, et al. Engineered antibody fragments and the rise of single domains. Nature biotechnology. 2005, vol. 23, no. 9, p. 1126-36. and HOOGENBOOM, et al. Natural and designer binding sites made by phage display technology. Immunology today. 2000, vol. 21, no. 8, p. 371-8.

According to one embodiment, the antibody of the Inven-

(i) at least one CDR wherein said CDR is comprising at least five consecutive amino acids of the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2, of the sequence starting in position 66 and finishing in position 87 of SEO ID NO:2 or of the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2;

(ii) at least one CDR wherein said CDR is comprising at least five consecutive amino acids of the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4, of the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 or of the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR wherein said CDR is, independently from one another, selected in the group of CDRs comprising at least 35 five consecutive amino acids:

- of the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,
- of the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2,
- of the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2,
- of the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,
- of the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4
- or of the sequence starting in position 109 and finishing in position 117 of SEO ID NO:4.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 3, 4 et al. High avidity scFv multimers; diabodies and triabodies. 50 or 5 and even more preferably 6 CDRs wherein said CDRs are, independently from one another, selected in the group of CDRs comprising at least five consecutive amino acids:

- of the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,
- of the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2,
- of the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2,
- of the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,
- of the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4
- or of the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to a another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and com-

- (iii) 2 and even more preferably 3 CDRs wherein said CDRs are, independently from one another, selected in the group of CDRs comprising at least five consecutive amino acids:
 - of the sequence starting in position 45 and finishing in ⁵ position 54 of SEQ ID NO:2,
 - of the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2,
 - of the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2,

or

- (iv) 2 and even more preferably 3 CDRs wherein said CDRs are, independently from one another, selected in the group of CDRs comprising at least five consecutive amino acids:
 - of the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,
 - of the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4
 - or of the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

- (i) at least one CDR selected, independently from one 25 another, in the group of the CDR as set forth in:
 - the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,
 - the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and
 - the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2; or
- (ii) at least one CDR selected, independently from one another, in the group of the CDR as set forth in:
 - the sequence starting in position 44 and finishing in 35 position 56 of SEQ ID NO:4,
 - the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and
 - the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR selected, independently from one another, in the group of the CDR as set forth in:

- the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,
- the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2,
- the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2,
- the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,
- the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and
- the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 3, 4 or 5 and even more preferably 6 CDRs selected, independently from one another, in the group of the CDR as set forth 60 in:

- the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,
- the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2,
- the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2,

10

- the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,
- the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and
- the sequence starting in position 109 and finishing in position 117 of SEO ID NO:4.

According to a another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

- (iv) 2 and even more preferably 3 CDRs wherein said CDRs are, independently from one another, selected in the group of the CDRs as set forth in:
 - the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,
 - the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2,
 - the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2,

OI

20

- (iv) 2 and even more preferably 3 CDRs wherein said CDRs are, independently from one another, selected in the group of the CDRs as set forth in:
 - the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,
 - the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4,
 - the sequence starting in position 109 and finishing in position 117 of SEO ID NO:4.

According to one embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 11, 12, or 13; or (ii) at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 14, 15 or 16.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 11, 12, 13, 14, 15 or 16.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 3, 4, 5 and even more preferably 6 CDRs comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 11, 12, 13, 14, 15 or 16.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) at least one CDR as set forth in any one of SEQ ID NOs: 11, 12 or 13; or (ii) at least one CDR set forth in any one of SEQ ID NOs: 14, 15 or 16.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR as set forth in any one of SEQ ID NOs: 11, 12, 13, 14, 15 or 16.

According to one preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 3, 4, 5 and even more preferably 6 CDRs as set forth in any one of SEQ ID NOs: 11, 12, 13, 14, or 16.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 17, 18 or 19; or (ii) at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 20, 21 or 22.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 17, 18, 19, 20, 21 or 22.

According to one preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 3, 4, 5 and even more preferably 6 CDRs comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 17, 18, 19, 20, 21 or 22.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) at least one CDR as set forth in any one of SEQ ID NOs: 17, 18 or 19; or (ii) at least one CDR as set forth in any one of SEQ ID NOs: 20, 21 or 22.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR set forth in any one of SEQ ID NOs: 17, 18, 19, 20, 21 or 22.

According to one preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 3, 4, 5 and even more preferably 6 CDRs as set forth in any one of SEQ ID NOs: 17, 18, 19, 20, 21 or 22.

According to another embodiment, the antibody of the 20 Invention binds specifically to CSF-1R and comprises (i) at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 23, 24 or 25; or (ii) at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 26, 27 or 28.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises at least one CDR comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 23, 24, 25, 26, 27 or 28.

According to one preferred embodiment, the antibody of 30 the Invention binds specifically to CSF-1R and comprises 2, 3, 4, 5 and even more preferably 6 CDRs comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 23, 24, 25, 26, 27 or 28.

According to another embodiment, the antibody of the 35 Invention binds specifically to CSF-1R and comprises (i) at least one CDR as set forth in any one of SEQ ID NOs: 23, 24 or 25; or (ii) at least one CDR as set forth in any one of SEQ ID NOs: 26, 27 or 28.

According to another embodiment, the antibody of the 40 Invention binds specifically to CSF-1R and comprises at least one CDR as set forth in any one of SEQ ID NOs: 23, 24, 25, 26, 27 or 28.

According to one preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 2, 45 3, 4, 5 and even more preferably 6 CDRs as set forth in any one of SEQ ID NOs: 23, 24, 25, 26, 27 or 28.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the CDRs 50 as set forth in:

the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,

the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and

the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the CDRs 60 as set forth in:

the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,

the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and

the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

12

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the three CDRs as set forth in SEQ ID NOs: 11, 12, and 13.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the three CDRs as set forth in SEQ ID NOs: 14, 15, and 16.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the three CDRs set forth in SEQ ID NOs: 17, 18, and 19.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the three CDRs as set forth in SEQ ID NOs: 20, 21, and 22.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the three CDRs as set forth in SEQ ID NOs: 23, 24, and 25.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein said variable region comprises the three CDRs as set forth in SEQ ID NOs: 26, 27, and 28.

In preferred embodiments, the said variable region further comprises one, more preferably two, even more preferably three and definitely preferably four framework region, and more preferably human FR. As used herein, a "human FR" is a framework region that is at least 75% homologous to the framework region of a naturally occurring human antibody.

According to one preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein the variable region comprises an amino acid sequence as set forth in SEQ ID NO:6.

In a more preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein the variable region is as set forth in SEQ ID NO:6.

In another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein the variable region comprises an amino acid sequence as set forth in SEQ ID NO:9.

In another more preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises a variable region, wherein the variable region is as set forth in SEQ ID NO:9.

In another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises two variable regions, wherein the variable regions are, independently from one another, selected in the group of

(i) variable regions comprising the CDRs as set forth in: the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,

the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and

the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2;

(ii) variable regions comprising the CDR as set forth in:

the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,

the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and

the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4;

(ii) variable regions comprising the three CDRs set forth in SEQ ID NOs: 11, 12, and 13;

- (iii) variable regions comprising the three CDRs set forth in SEQ ID NOs: 14, 15, and 16;
- (iv) variable regions comprising the three CDRs set forth in SEQ ID NOs: 17, 18, and 19;
- (v) variable regions comprising the three CDRs set forth in 5 SEQ ID NOs: 20, 21, and 22;
- (vi) variable regions comprising the three CDRs set forth in SEQ ID NOs: 23, 24, and 25

(vii) variable regions comprising the three CDRs set forth 10 in SEQ ID NOs: 26, 27 and 28.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

(i) a first variable region, wherein said variable region comprises:

the CDR as set forth in the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,

the CDR as set forth in the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and the CDR as set forth in the sequence starting in position 20 117 and finishing in position 126 of SEQ ID NO:2;

and

(ii) a second variable region, wherein said variable region comprises:

the CDR as set forth in the sequence starting in position 25 44 and finishing in position 56 of SEQ ID NO:4,

the CDR as set forth in the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and the CDR as set forth in the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

- (i) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 11, 12, and 13, and
- (ii) a variable region comprising the three CDRs as set forth 35 in SEQ ID NOs: 14, 15, and 16.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

- (i) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 17, 18, and 19, and
- (ii) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 20, 21, and 22.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

- (i) a variable region comprising the three CDRs as set forth 45 in SEQ ID NOs: 23, 24, and 25, and
- (ii) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 26, 27, and 28.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

- (i) a variable region as set forth in SEQ ID NO:6 and
- (ii) a variable region as set forth in SEQ ID NO:9.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises:

(i) a heavy-chain variable region comprising:

the CDR as set forth in the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,

the CDR as set forth in the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and

the CDR as set forth in the sequence starting in position 60 117 and finishing in position 126 of SEQ ID NO:2;

(ii) a light-chain variable region comprising:

the CDR as set forth in the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4, the CDR as set forth in the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and

14

the CDR as set forth in the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 11, 12, and 13, and (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 14, 15, and 16.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 17, 18, and 19, and (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 20, 21, and 22.

According to another embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 23, 24, and 25, and (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 26, 27, and 28.

According to a preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises (i) a heavy-chain variable region as set forth in SEQ ID NO:6 and (ii) a light-chain variable region as set forth in SEQ ID NO:9.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

(i) a variable regions comprising:

the CDR as set forth in the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,

the CDR set forth in the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and

the CDR set forth in the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2;

50

(ii) a variable region comprising:

the CDR set forth in the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,

the CDR set forth in the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and

the CDR set forth in the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

- (i) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 11, 12, and 13, and
- (ii) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 14, 15, and 16.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

- (i) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 17, 18, and 19, and
- (ii) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 20, 21, and 22.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises

- (i) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 23, 24, and 25, and
- (ii) a variable region comprising the three CDRs as set forth in SEQ ID NOs: 26, 27, and 28.

According to a more preferred embodiment, the antibody 65 of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

(i) a variable region as set forth in SEQ ID NO:6 and

(ii) a variable region as set forth in SEQ ID NO:9.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

(i) a heavy-chain variable region comprising:
the CDR set forth in the sequence starting in position 45
and finishing in position 54 of SEQ ID NO:2,
the CDR set forth in the sequence starting in position 66
and finishing in position 87 of SEQ ID NO:2 and

the CDR set forth in the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2

and

(ii) a light-chain variable region comprising:

the CDR set forth in the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4,

the CDR set forth in the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and the CDR set forth in the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another preferred embodiment, the antibody 20 of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

- (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 11, 12, and 13, and
- (ii) a light-chain variable region comprising the three 25 CDRs as set forth in SEQ ID NOs: 14, 15, and 16.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

- (i) a heavy-chain variable region comprising the three 30 CDRs as set forth in SEQ ID NOs: 17, 18, and 19, and
- (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 20, 21, and 22.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, 35 wherein said scFv comprises:

- (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 23, 24, and 25, and
- (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 26, 27, and 28.

According to a more preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and is a scFv, wherein said scFv comprises:

- (i) the heavy-chain variable region as set forth in SEQ ID NO:6 and
- (ii) the light-chain variable region as set forth in SEQ ID NO:9.

In an even more preferred embodiment, the scFv is provided wherein at least one amino acid is substituted (according to Table 1 and Table 2) within the amino acid sequence as set forth in SEQ ID NO 6 and 9. In a definitely preferred embodiment the human antibody is provided wherein all the amino acid depicted in Table 1 and Table 2 are substituted (according to Table 1 and Table 2) within the amino acid sequence as set forth in SEQ ID NO 6 and 9.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises the heavy chain as set forth in SEQ ID NO:2.

According to another preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises 60 the light chain as set forth in SEQ ID NO:4.

According to a more preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and comprises the heavy chain as set forth in SEQ ID NO:2 and the light chain as set forth in SEQ ID NO:4.

According to an even more preferred embodiment, the antibody of the Invention binds specifically to CSF-1R and

16

comprises two heavy chains as set forth in SEQ ID NO:2 and two light chain as set forth in SEQ ID NO:4. This particular antibody will be named CXIIG6 throughout the present application.

According to another preferred embodiment, the present invention relates to a human antibody, that specifically binds to CSF-1R, comprising:

(i) a heavy-chain variable region comprising:

the CDR as set forth in the sequence starting in position 45 and finishing in position 54 of SEQ ID NO:2,

the CDR as set forth in the sequence starting in position 66 and finishing in position 87 of SEQ ID NO:2 and the CDR as set forth in the sequence starting in position 117 and finishing in position 126 of SEQ ID NO:2;

and

15

(ii) a light-chain variable region comprising:

the CDR as set forth in the sequence starting in position 44 and finishing in position 56 of SEQ ID NO:4.

the CDR as set forth in the sequence starting in position 66 and finishing in position 76 of SEQ ID NO:4 and the CDR as set forth in the sequence starting in position 109 and finishing in position 117 of SEQ ID NO:4.

According to another embodiment, the present invention relates to an human antibody, that specifically binds to CSF-1R, comprising:

- (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 11, 12, and 13, and
- (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 14, 15, and 16.

According to another embodiment, the present invention relates to an human antibody, that specifically binds to CSF-1R, comprising:

- (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 17, 18, and 19, and
- (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 20, 21, and 22.

According to another embodiment, the present invention relates to an human antibody, that specifically binds to CSF-1R, comprising:

- (i) a heavy-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 23, 24, and 25, and
- (ii) a light-chain variable region comprising the three CDRs as set forth in SEQ ID NOs: 26, 27, and 28.

According to a preferred embodiment, the present invention relates to an human antibody, that specifically binds to CSF-1R, comprising:

- (i) the heavy-chain variable region set forth in SEQ ID NO:6 and
- (ii) the light-chain variable region set forth in SEQ ID

In a more preferred embodiment, the human antibody is provided wherein at least one amino acid is substituted (according to Table 1 and Table 2) within the amino acid sequence as set forth in SEQ ID NO: 6 and 9. In a even more preferred embodiment the human antibody is provided wherein all the amino acid depicted in Table 1 and Table 2 are substituted (according to Table 1 and Table 2) within the amino acid sequence as set forth in SEQ ID NO: 6 and 9.

TABLE 1

SEQ ID NO: 6	position	Preferred substitution
K	3	Q
E	5	V
M	18	L
K	19	R

15

20

SEQ ID NO: 6	position	Preferred substitution
W	33	Y
S	40	A
E	42	G
M	43	K
A	49	G
E	50	R
I	51	T
A	59	T
F	61	E
E	64	A
S	79	N
V	81	L
R	89	K
P	90	T, A
G	94	A
I	95	V
T	99	A
N	107	Y, V
T	113	L
L	114	V

TABLE 2

	17 1171/1	. 2	
SEQ ID NO: 9	Position	Preferred substitution	25
A	9	S	
V	13	A	
Е	17	D	
T	18	R	
E	27	Q G	
N	28	G	30
Q	40	P, D	
Q s Q V	43	À	
Q	45	K	
v	48	L	
H	49	Y	
N	53	R	35
A	55	E	
D	56	S	
Q	70	D	
Ý	71	F	
S	72	T	
K	74	T	40
N	76	S	40
S	80	P	
G	84	A	
S	85	T	
H	90	Q	
G	100	Q	

The antibody, more specifically the human antibody, according to the invention may be of different isotypes, such as IgG, IgA, IgM or IgE. In a preferred embodiment the antibody, more specifically the human antibody, according to 50 the invention is an IgG.

In a related embodiment, the human antibody comprises a modified or unmodified constant region of a human IgGI, IgG2, IgG3 or IgG4. In a preferred embodiment, the constant region is human IgG1 or IgG4, which may optionally be 55 modified to enhance or decrease certain properties.

In the case of IgG1, modifications to the constant region, particularly the hinge or CH2 region, may increase or decrease effector function, including ADCC and/or CDC activity. In other embodiments, an IgG2 constant region is 60 modified to decrease antibody-antigen aggregate formation. In the case of IgG4, modifications to the constant region, particularly the hinge region, may reduce the formation of half-antibodies.

The desired binding affinity may be retained even though 65 one or more of the amino acids in the antibody are mutated. These variants have at least one amino acid in the antibody

18

replaced by a different residue. According to another embodiment, the present invention provides an antibody that specifically binds to CSF1 as above described in which at least one of the amino acid comprised in the CDR(s) is conservatively substituted. Conservative substitutions are shown in Table 3.

TABLE 3

)	Original Amino Acid	Preferred conservative substitution	More preferred conservative substitution
	A	V, L, I	V
	R	K, Q, N	K
	N	Q, H, D, K, R	Q
	D	E, N	È
	C	S, A	S
5	Q	N, E	N
	È	D, Q	D
	G	A	A
	H	N, Q, K, R	R
	I	L, V, M, A, F	L
	L	I, V, M, A, F	I
)	K	R, Q, N	R
	M	L, F, I	L
	F	W, L, V, I, A, Y	Y
	P	A	A
	S	T	T
	T	V, S	S
	W	Y, F	Y
	Y	W, F, T, S	F
	V	L, M, F, A	L

The present invention also relates to a process of modifying 30 the antibody of the invention by affinity maturation.

As used herein, "affinity maturation" refers to the substitution of one or more amino acid comprised in one or more CDRs, said substitution resulting in an improvement in the affinity of the antibody to CSF-1R, compared to a parent 35 antibody which does not possess those substitution(s). Affinity maturation processes are known in the art. See for example methods disclosed in MARKS, et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology. 1992, vol. 10, no. 7, p. 779-83.; BAR-BAS, et al. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proceedings of the National Academy of Sciences of the United States of America. 1994, vol. 91, no. 9, p. 3809-13.; SCHIER. Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene. 1996, vol. 169, no. 2, p. 147-55.: YELTON. Affinity maturation of the BR96 anticarcinoma antibody by codon-based mutagenesis. J. immunol. 1995, vol. 155, no. 4, p. 1994-2004.; JACKSON, et al. In vitro antibody maturation. Improvement of a high affinity, neutralizing antibody against IL-1 beta. J. immunol. 1995, vol. 154, no. 7, p. 3310-9, and HAWKINS, et al. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. Journal of molecular biology. 1992, vol. 226, no.

The present invention also relates to an antibody, that specifically binds to CSF-1R, obtained by affinity maturation as previously described.

In another embodiment, the present invention provides variants of the antibody previously described, having an amino acid sequence which is at least 80%, preferably at least 85%, more preferably at least 90%, and even more preferably at least 98% homologous to the amino acid sequence of the previously described antibody.

In another embodiment, the antibody according to the invention specifically binds to more than one epitope. For example, the antibody according to the invention may bind to

two different epitopes of CSF-1R. Alternatively, the antibody according to the invention can be able to bind to CSF-1R and to another molecule. As used herein, antibodies that specifically bind to more than one epitope can be cross-linked antibodies. For example, an antibody can be coupled to avidin, 5 the other to biotin. Cross-linked antibodies may be made using any convenient cross-linking methods well known in the art. Techniques for generating bispecific antibodies from antibody fragments have also been described, see for example BRENNAN, et al. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science. 1985, vol. 229, no. 4708, p. 81-3. and SHALABY, et al. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. The Journal of 15 experimental medicine. 1992, vol. 175, no. 1, p. 217-25. KOSTELNY, et al. Formation of a bispecific antibody by the use of leucine zippers. J. immunol. 1992, vol. 148, no. 5, p.

According to a preferred embodiment, the antibody that 20 specifically binds to more than one epitope according to the invention is a diabody.

According to another preferred embodiment, the antibody that specifically binds to more than one epitope according to the invention is a linear antibody as described in ZAPATA, et 25 al. Engineering linear F(ab')2 fragments for efficient production in *Escherichia coli* and enhanced antiproliferative activity. *Protein engineering*. 1995, vol. 8, no. 10, p. 1057-62.

The antibody according to the invention may be glycosylated or non-glycosylated.

As used herein, the term "glycosylation" refers to the presence of carbohydrate units that are covalently attached to the antibody.

In another embodiment, the antibody according to the invention is conjugated to a radiosensitizer agent, a receptor 35 and/or a cytotoxic agent

As used herein, the term "radiosensitizer" refers to a molecule that makes cells more sensitive to radiation therapy. Radiosensitizer includes, but are not limited to, metronidazole, misonidazole, desmethylmisonidazole, pimonidazole, etanidazole, nimorazole, mitomycin C, RSU 1069, SR 4233, E09, RB 6145, nicotinamide, 5-bromodeoxyuridine (BUdR), iododeoxyuridine(IUdR), bromodeoxycytidine, fluorodeoxyuridine (FUdR), hydroxyurea and cisplatin.

As used herein, the term "receptor" refers to a compound 45 able to specifically bind to a ligand. According to a preferred embodiment of the invention, the receptor is biotin.

As used herein, the term cytoxic agent refers to a compound that is directly toxic to cells, preventing their reproduction or growth. According to a preferred embodiment, the 50 cytotoxic agent used in the context of the present invention is chosen from the group comprising cancer therapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), or a radioactive isotope.

In another embodiment, the antibody according to the invention is conjugated to a labelling agent

As used herein, "a labelling agent" refers to a detectable compound. The labelling agent may be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case 60 of an enzymatic label, may catalyze chemical modification of a substrate compound which is detectable.

As used herein, the term "conjugated" means that the antibody according to the invention and the labelling agent are covalently or non-covalently linked.

"Covalent link" refers to coupling through reactive functional groups, optionally with the intermediary use of a cross 20

linker or other activating agent (see for example HERMAN-SON. Bioconjugate techniques. Academic press, 1996.). The antibody according to the invention and/or the conjugated agent may be modified in order to allow their coupling via, for example, substitution on an activated carbonyl group (including those activated in situ) or on an imidoester, via addition on an unsaturated carbonyl group, by reductive amination, nucleophilic substitution on a saturated carbon atom or on a heteroatom, by reaction on aromatic cycles, In particular, coupling may be done using homobifunctional or heterobifunctional cross-linking reagents. Homobifunctional cross linkers including glutaraldehyde, succinic acid and bis-imidoester like DMS (dimethyl suberimidate) can be used to couple amine groups which may be present on the various moieties. Numerous examples are given in HERMANSON. Bioconjugate techniques. Academic press, 1996. p. 118-228. which are well known by those of the art. Heterobifunctional cross linkers include those having both amine reactive and sulfhydryl-reactive groups, carbonyl-reactive and sulfhydrylreactive groups and sulfhydryl-reactive groups and photoreactive linkers. Suitable heterobifunctional cross-linkers are, for example, described in HERMANSON. Bioconjugate techniques. Academic press, 1996. p. 229-285. Examples are, for example, SPDP(N-succinimidyl 3-(2-pyridyldithio) pro-SMBP (succinimidyl-4-(p-maleimidophenyl) pionate), butyrate), SMPT (succinimidyloxycarbonyl-methyl-(-2-pyridyldithio) toluene), MBS (m-maleimidobenzoyl-N-hydroxysuccinimide ester), STAB (N-succinimidyl (4 iodoacetyl)aminobenzoate), GMBS (γ-maleimidobutyryloxy) succinimide ester), SIAX (succinimidyl-6-iodoacetyl amino hexonate, SIAC (succinimidyl-4-iodoacetyl amino methyl), NPIA (p-nitrophenyl iodoacetate). Other examples are useful to couple carbohydrate-containing molecules (e.g. env glycoproteins, antibodies) to sulfydryl-reactive groups. Examples include MPBH (4-(4-N maleimidophenyl) butyric acid hydrazide) and PDPH (4-(N-maleimidomethyl)cyclohexane-1-carboxyl-hydrazide (M2C2H and 3-2(2-pyridyldithio) proprionyl hydrazide).

Radiosensitizer includes, but are not limited to, metronidazole, misonidazole, desmethylmisonidazole, pimonidazole, 40 relates to a nucleic acid sequence coding the antibody of the etanidazole, nimorazole, mitomycin C. RSU 1069, SR 4233.

The term "nucleic acid sequence" refers to a linear sequence of nucleotides. The nucleotides are either a linear sequence of polyribonucleotides or polydeoxyribonucleotides, or a mixture of both. Examples of polynucleotides in the context of the present invention include single and double stranded DNA, single and double stranded RNA, and hybrid molecules that have both mixtures of single and double stranded DNA and RNA. Further, the polynucleotides of the present invention may have one or more modified nucleotides

According to a preferred embodiment of the invention, the nucleic acid sequence according to the invention is comprised in a vector.

The vector can be of plasmid or viral origin and can, where appropriate, be combined with one or more substances which improve the transfectional efficiency and/or stability of the vector. These substances are widely documented in the literature which is available to the skilled person (see, for example, FELGNER, et al. Cationic liposome mediated transfection. *Proceedings of the Western Pharmacology Society.* 1989, vol. 32, p. 115-21.; HODGSON, et al. Virosomes: cationic liposomes enhance retroviral transduction. *Nature biotechnology.* 1996, vol. 14, no. 3, p. 339-42.; REMY, et al. Gene transfer with a series of lipophilic DNA-binding molecules. *Bioconjugate chemistry.* 1994, vol. 5, no. 6, p. 647-54.). By way of non-limiting illustration, the substances can be polymers,

lipids, in particular cationic lipids, liposomes, nuclear proteins or neutral lipids. These substances can be used alone or in combination. A combination which can be envisaged is that of a recombinant plasmid vector which is combined with cationic lipids (DOGS, DC-CHOL, spermine-chol, spermi- 5 dine-chol, etc.), lysophospholipides (for example Hexadecylphosphocholine) and neutral lipids (DOPE).

According to a preferred embodiment, the cationic lipids which can be used in the present invention are the cationic lipids describes in EP 901463 B and more preferably 10 pcTG90.

The choice of the plasmids which can be used within the context of the present invention is huge. They can be cloning vectors and/or expression vectors. In a general manner, they are known to the skilled person and, while a number of them 15 are available commercially, it is also possible to construct them or to modify them using the techniques of genetic manipulation. Examples which may be mentioned are the plasmids which are derived from pBR322 (Gibco BRL), pUC (Gibco BRL), pBluescript (Stratagene), pREP4, pCEP4 (In- 20 vitrogene) or p Poly (LATHE, et al. Plasmid and bacteriophage vectors for excision of intact inserts. Gene. 1987, vol. 57, no. 2-3, p. 193-201.). Preferably, a plasmid which is used in the context of the present invention contains an origin of replication which ensures that replication is initiated in a 25 producer cell and/or a host cell (for example, the ColE1 origin will be chosen for a plasmid which is intended to be produced in E. coli and the oriP/EBNA1 system will be chosen if it desired that the plasmid should be self-replicating in a mammalian host cell, LUPTON, et al. Mapping genetic elements 30 of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Molecular and cellular biology. 1985, vol. 5, no. 10, p. 2533-42.; YATES, et al. Stable replication of plasmids derived from vol. 313, no. 6005, p. 812-5.). The plasmid can additionally comprise a selection gene which enables the transfected cells to be selected or identified (complementation of an auxotrophic mutation, gene encoding resistance to an antibiotic, etc.). Naturally, the plasmid can contain additional elements 40 which improve its maintenance and/or its stability in a given cell (cer sequence, which promotes maintenance of a plasmid in monomeric form (SUMMERS, et al. Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization 45 and stability. Cell. 1984, vol. 36, no. 4, p. 1097-103., sequences for integration into the cell genome).

With regard to a viral vector, it is possible to envisage a vector which is derived from a poxvirus (vaccinia virus, in particular MVA, canarypoxvirus, etc.), from an adenovirus, 50 from a retrovirus, from a herpesvirus, from an alphavirus, from a foamy virus or from an adenovirus-associated virus. It is possible to use replication competent or replication deficient viral vectors. Preference will be given to using a vector which does not integrate. In this respect, adenoviral vectors 55 and vectors deriving from poxvirus and more preferably vaccinia virus and MVA are very particularly suitable for implementing the present invention.

According to a preferred embodiment, the viral vector according to the invention derives from a Modified Vaccinia 60 Virus Ankara (MVA). MVA vectors and methods to produce such vectors are fully described in European patents EP 83286 A and EP 206920 A, as well as in SUTTER, et al. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. U.S.A. 1992, vol. 89, no. 65 22, p. 10847-51. According to a more preferred embodiment, the nucleic acid sequence according to the invention may be

22

inserted in deletion I, II, III, IV, V and VI of the MVA vector and even more preferably in deletion III (MEYER, et al. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. The Journal of general virology. 1991, vol. 72, no. Pt5, p. 1031-8.; SUTTER, et al. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine. 1994, vol. 12, no. 11, p. 1032-40.).

Retroviruses have the property of infecting, and in most cases integrating into, dividing cells and in this regard are particularly appropriate for use in relation to cancer. A recombinant retrovirus according to the invention generally contains the LTR sequences, an encapsidation region and the nucleotide sequence according to the invention, which is placed under the control of the retroviral LTR or of an internal promoter such as those described below. The recombinant retrovirus can be derived from a retrovirus of any origin (murine, primate, feline, human, etc.) and in particular from the MoMuLV (Molonev murine leukemia virus), MVS (Murine sarcoma virus) or Friend murine retrovirus (Fb29). It is propagated in an encapsidation cell line which is able to supply in trans the viral polypeptides gag, pol and/or env which are required for constituting a viral particle. Such cell lines are described in the literature (PA317, Psi CRIP GP+Am-12 etc.). The retroviral vector according to the invention can contain modifications, in particular in the LTRs (replacement of the promoter region with a eukaryotic promoter) or the encapsidation region (replacement with a heterologous encapsidation region, for example the VL3O type) (see U.S. Pat. No. 5,747,323)

Preference will be also given to using an adenoviral vector which lacks all or part of at least one region which is essential for replication and which is selected from the E1, E2, E4 and Epstein-Barr virus in various mammalian cells. Nature. 1985, 35 L1-L5 regions in order to avoid the vector being propagated within the host organism or the environment. A deletion of the E1 region is preferred. However, it can be combined with (an)other modification(s)-/deletion(s) affecting, in particular, all or part of the E2, E4 and/or L1-L5 regions, to the extent that the defective essential functions are complemented in trans by means of a complementing cell line and/or a helper virus. In this respect, it is possible to use second-generation vectors of the state of the art (see, for example, international applications WO 94/28152 and WO 97/04119). By way of illustration, deletion of the major part of the E1 region and of the E4 transcription unit is very particularly advantageous. For the purpose of increasing the cloning capacities, the adenoviral vector can additionally lack all or part of the nonessential E3 region. According to another alternative, it is possible to make use of a minimal adenoviral vector which retains the sequences which are essential for encapsidation, namely the 5' and 3' ITRs (Inverted Terminal Repeat), and the encapsidation region. The various adenoviral vectors, and the techniques for preparing them, are known (see, for example, GRAHAM, et al. Methods in molecular biology. Edited by MURREY. The human press inc, 1991. p. 109-128.).

> Furthermore, the origin of the adenoviral vector according to the invention can vary both from the point of view of the species and from the point of view of the serotype. The vector can be derived from the genome of an adenovirus of human or animal (canine, avian, bovine, murine, ovine, porcine, simian, etc.) origin or from a hybrid which comprises adenoviral genome fragments of at least two different origins. More particular mention may be made of the CAV-I or CAV-2 adenoviruses of canine origin, of the DAV adenovirus of avian origin or of the Bad type 3 adenovirus of bovine origin (ZAKHARCHUK, et al. Physical mapping and homology

studies of egg drop syndrome (EDS-76) adenovirus DNA. *Archives of virology.* 1993, vol. 128, no. 1-2, p. 171-6.; SPIBEY, et al. Molecular cloning and restriction endonuclease mapping of two strains of canine adenovirus type 2. *The Journal of general virology.* 1989, vol. 70, no. Pt 1, p. 5165-72.; JOUVENNE, et al. Cloning, physical mapping and cross-hybridization of the canine adenovirus types 1 and 2 genomes. *Gene.* 1987, vol. 60, no. 1, p. 21-8.; MITTAL, et al. Development of a bovine adenovirus type 3-based expression vector. *The Journal of general virology.* 1995, vol. 76, no. Pt 101, p. 93-102.). However, preference will be given to an adenoviral vector of human origin which is preferably derived from a serotype C— adenovirus, in particular a type 2 or 5 serotype C adenovirus.

The term "replication-competent" as used herein refers to 15 a viral vector capable of replicating in a host cell in the absence of any trans-complementation.

According to a preferred embodiment of the invention, the replication competent vector is a replication competent adenoviral vector. These replication competent adenoviral vectors 20 are well known by the one skilled in the art. Among these, adenoviral vectors deleted in the E1b region coding the 55 kD P53 inhibitor, as in the ONYX-015 virus (BISCHOFF, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. *Science*. 1996, vol. 274, no. 5286, p. 25 373-6.; He HEISE, et al. An adenovirus EIA mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Medicine. 2000, vol. 6, no. 10, p. 1134-9.; WO 94/18992), are particularly preferred. Accordingly, this virus can be used to selectively infect and kill p53-deficient neo- 30 plastic cells. A person of ordinary skill in the art can also mutate and disrupt the p53 inhibitor gene in adenovirus 5 or other viruses according to established techniques. Adenoviral vectors deleted in the EIA Rb binding region can also be used in the present invention. For example, Delta24 virus which is 35 a mutant adenovirus carrying a 24 base pair deletion in the EIA region (FUEYO, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000, vol. 19, no. 1, p. 2-12.). Delta24 has a deletion in the Rb binding region and does not bind to Rb. 40 Therefore, replication of the mutant virus is inhibited by Rb in a normal cell. However, if Rb is inactivated and the cell becomes neoplastic, Delta24 is no longer inhibited. Instead, the mutant virus replicates efficiently and lyses the Rb-deficient cell.

An adenoviral vector according to the present invention can be generated in vitro in *Escherichia coli* (*E. coli*) by ligation or homologous recombination (see, for example, international application WO 96/17070) or else by recombination in a complementing cell line.

According to a preferred embodiment of the invention, the vector further comprises the elements necessary for the expression of the antibody according to the invention.

The elements necessary for the expression consist of all the elements which enable the nucleic acid sequence to be transcribed into RNA and the mRNA to be translated into polypeptide. These elements comprise, in particular, a promoter which may be regulable or constitutive. Naturally, the promoter is suited to the chosen vector and the host cell. Examples which may be mentioned are the eukaryotic promoters of the PGK (phosphoglycerate kinase), MT (metallothionein; MCIVOR. Human purine nucleoside phosphorylase and adenosine deaminase: gene transfer into cultured cells and murine hematopoietic stem cells by using recombinant amphotropic retroviruses. *Molecular and cellular biology.* 1987, vol. 7, no. 2, p. 838-46.), α-1 antitrypsin, CFTR, surfactant, immunoglobulin, actin (TABIN, et al. Adaptation

of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Molecular and cellular biology. 1982, vol. 2, no. 4, p. 426-36.) and SRα (TAKEBE, et al. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Molecular and cellular biology. 1988, vol. 8, no. 1, p. 466-72.) genes, the early promoter of the SV40 virus (Simian virus), the LTR of RSV (Rous sarcoma virus), the HSV-ITK promoter, the early promoter of the CMV virus (Cytomegalovirus), the p7.5K pH5R, pK1L, p28 and p11 promoters of the vaccinia virus, chimeric promoters such as p11K7.5 and the E1A and MLP adenoviral promoters. The promoter can also be a promoter which stimulates expression in a tumor or cancer cell. Particular mention may be made of the promoters of the MUC-I gene, which is overexpressed in breast and prostate cancers (CHEN, et al. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. The Journal of clinical investigation. 1995, vol. 96, no. 6, p. 2775-82.), of the CEA (standing for carcinoma embryonic antigen) gene, which is overexpressed in colon cancers (SCHREWE, et al. Cloning of the complete gene for carcinoembryonic antigen: analysis of its promoter indicates a region conveying cell type-specific expression. Molecular and cellular biology. 1990, vol. 10, no. 6, p. 2738-48.) of the tyrosinase gene, which is overexpressed in melanomas (VILE, et al. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer res. 1993, vol. 53, no. 17, p. 3860-4.), of the ERBB-2 gene, which is overexpressed in breast and pancreatic cancers (HARRIS, et al. Gene therapy for cancer using tumour-specific prodrug activation. Gene therapy. 1994, vol. 1, no. 3, p. 170-5.) and of the α -fetoprotein gene, which is overexpressed in liver cancers (KANAI, et al. In vivo gene therapy for alpha-fetoproteinproducing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer res. 1997, vol. 57, no. 3, p. 461-5.). The cytomegalovirus (CMV) early promoter is very particularly preferred.

However, when a vector deriving from a Vaccinia Virus (as for example an MVA vector) is used, the promoter of the thymidine kinase 7.5K gene and the pH5R promoter are particularly preferred.

The necessary elements can furthermore include additional elements which improve the expression of the nucleic acid sequence according to the invention or its maintenance in the host cell. Intron sequences, secretion signal sequences, nuclear localization sequences, internal sites for the reinitiation of translation of IRES type, transcription termination poly

A sequences, tripartite leaders and origins of replication may in particular be mentioned. These elements are known to the skilled person. Among secretion signal sequence, sequences encoding the polypeptides as set forth in SEQ ID NO 5 and/or 8 are particularly preferred.

The recombinant vector according to the invention can also comprise one or more additional genes of interest, with it being possible for these genes to be placed under the control of the same regulatory elements (polycistronic cassette) or of independent elements. Genes which may in particular be mentioned are the genes encoding interleukins IL-2, IL-4, IL-7, IL-10, IL-12, IL-15, IL-18, chemokines as CCL19, CCL20, CCL21, CXCL-14, interferons, tumor necrosis factor (TNF), and factors acting on innate immunity and angiogenesis (for example PAI-1, standing for plasminogen acti-

vator inhibitor). In one particular embodiment, the recombinant vector according to the invention comprises the gene of interest encoding IL-2.

The present invention also relates to a cell comprising the nucleic acid sequence according to the invention. In a preferred embodiment, he cell according to the invention is eukaryotic cell and more preferably a mammalian cell. Mammalian cells available as hosts for expression are well known in the art and include many immortalized cell lines, such as but not limited to, Chinese Hamster Ovary (CHO) cells, Baby 10 Hamster Kidney (BHK) cells and many others. Suitable additional eukaryotic cells include yeast and other fungi.

The present invention also relates to a process for producing an antibody according to the invention comprising culturing the cell according to the invention under conditions 15 permitting expression of the antibody and purifying the antibody from the cell or medium surrounding the cell.

In another embodiment, the present invention relates to a pharmaceutical composition comprising any one of the antibody, the nucleic acid sequence or the vector according to the 20 invention and a pharmaceutically acceptable carrier. In a preferred embodiment, the pharmaceutical composition further comprises a compound of interest.

The pharmaceutically acceptable carrier is preferably isotonic, hypotonic or weakly hypertonic and has a relatively 25 low ionic strength, such as for example a sucrose solution. Moreover, such a carrier may contain any solvent, or aqueous or partially aqueous liquid such as nonpyrogenic sterile water. The pH of the pharmaceutical composition is, in addition, adjusted and buffered so as to meet the requirements of use in 30 vivo. The pharmaceutical composition may also include a pharmaceutically acceptable diluent, adjuvant or excipient, as well as solubilizing, stabilizing and preserving agents. For injectable administration, a formulation in aqueous, non-aqueous or isotonic solution is preferred. It may be provided 35 in a single dose or in a multidose in liquid or dry (powder, lyophilisate and the like) form which can be reconstituted at the time of use with an appropriate diluent.

The present invention also relates, to a kit of part comprising (i) a pharmaceutical composition, an antibody, a nucleic 40 acid sequence or a vector according to the invention and, (ii) a compound of interest.

As used herein the term, "compound of interest" relates to a therapeutic compound and preferably to a cancer therapeutic agent or a compound useful in the treatment of bone mass 45 decrease.

According to a preferred embodiment, the cancer therapeutic agent is chosen from the group comprising Abraxane (Paclitaxel Albumin-stabilized Nanoparticle Formulation), Adriamycin (Doxorubicin Hydrochloride), Adrucil (Fluo- 50 rouracil), Aldara (Imiquimod), Alemtuzumab, Alimta (Pemetrexed Disodium), Aminolevulinic Acid, Anastrozole, Aprepitant, Arimidex (Anastrozole), Aromasin (Exemestane), Arranon (Nelarabine), Arsenic Trioxide, Avastin (Bevacizumab), Azacitidine, Bevacizumab, Bexarotene, Bort- 55 ezomib, Campath (Alemtuzumab), Camptosar (Irinotecan Hydrochloride), Capecitabine, Carboplatin, Cetuximab, Cisplatin, Clafen (Cyclophosphamide), Clofarabine, Clofarex (Clofarabine), Clolar (Clofarabine), Cyclophosphamide, Cytarabine, Cytosar-U (Cytarabine), Cytoxan (Cyclophos- 60 phamide), Dacogen (Decitabine), Dasatinib, Decitabine, DepoCyt (Liposomal Cytarabine), DepoFoam (Liposomal Cytarabine), Dexrazoxane Hydrochloride, Docetaxel, Doxil (Doxorubicin Hydrochloride Liposome), Doxorubicin Hydrochloride, Doxorubicin Hydrochloride Liposome, Dox- 65 SL (Doxorubicin Hydrochloride Liposome), Efudex (Fluorouracil), Ellence (Epirubicin Hydrochloride), Eloxatin (Ox26

aliplatin), Emend (Aprepitant), Epirubicin Hydrochloride. Erbitux (Cetuximab), Erlotinib Hydrochloride, Evacet (Doxorubicin Hydrochloride Liposome), Evista (Raloxifene Hydrochloride), Exemestane, Faslodex (Fulvestrant), Femara (Letrozole), Fluoroplex (Fluorouracil), Fluorouracil, Fulvestrant, Gefitinib, Gemcitabine Hydrochloride, Gemtuzumab Ozogamicin, Gemzar (Gemcitabine Hydrochloride), Gleevec (Imatinib Mesylate), Herceptin (Trastuzumab), Hycamtin (Topotecan Hydrochloride), Imatinib Mesylate, Imiquimod, Iressa (Gefitinib), Irinotecan Hydrochloride, Ixabepilone, Ixempra (Ixabepilone), Keoxifene (Raloxifene Hydrochloride), Kepivance (Palifermin), Lapatinib Ditosylate, Lenalidomide, Letrozole, Levulan (Aminolevulinic Acid), LipoDox (Doxorubicin Hydrochloride Liposome), Liposomal Cytarabine, Methazolastone (Temozolomide), Methotrexate, Mylosar (Azacitidine), Mylotarg (Gemtuzumab Ozogamicin), Nanoparticle Paclitaxel (Paclitaxel Albumin-stabilized Nanoparticle Formulation), Nelarabine, Neosar (Cyclophosphamide), Nexavar (Sorafenib Tosylate), Nilotinib, Nolvadex (Tamoxifen Citrate), Oncaspar (Pegaspargase), Oxaliplatin, Paclitaxel, Paclitaxel Albumin-stabilized Nanoparticle Formulation, Palifermin, Panitumumab, Paraplat (Carboplatin), Paraplatin (Carboplatin), Pegaspargase, Pemetrexed Disodium, Platinol-AQ (Cisplatin), Platinol (Cisplatin), Raloxifene Hydrochloride, Revlimid (Lenalidomide), Rituxan (Rituximab), Rituximab, Sclerosol Intrapleural Aerosol (Talc), Sorafenib Tosylate, Sprycel (Dasatinib), Sterile Talc Powder (Talc), Steritalc (Talc), Sunitinib Malate, Sutent (Sunitinib Malate), Synovir (Thalidomide), Talc, Tamoxifen Citrate, Tarabine PFS (Cytarabine), Tarceva (Erlotinib Hydrochloride), Targretin (Bexarotene), Tasigna (Nilotinib), Taxol (Paclitaxel), Taxotere (Docetaxel), Temodar (Temozolomide), Temozolomide, Temsirolimus, Thalomid (Thalidomide), Thalidomide, Totect (Dexrazoxane Hydrochloride), Topotecan Hydrochloride, Torisel (Temsirolimus), Trastuzumab, Trisenox (Arsenic Trioxide), Tykerb (Lapatinib Ditosylate), Vectibix (Panitumumab), Velcade (Bortezomib), Vidaza (Azacitidine), Vorinostat, Xeloda (Capecitabine), Zinecard (Dexrazoxane Hydrochloride), Zoledronic Acid, Zolinza (Vorinostat) and Zometa (Zoledronic Acid).

According to a preferred embodiment of the invention the compound useful in the treatment of bone mass decrease is a biphosphonate, a selective oestrogen receptor modulators (SERMs), a parathyroid hormone (PTH) (e.g. teriparatide (Forteo)), strontium ranelate, Denosumab or calcitonin, or a combination thereof. According to a more preferred embodiment, the biphosphonate is chosen from the group comprising Alendronate (Fosamax, Fosamax Plus D), Etidronate (Didronel), Ibandronate (Boniva), Pamidronate (Aredia), Risedronate (Actonel, Actonel W/Calcium), Tiludronate (Skelid), and Zoledronic acid (Reclast, Zometa). According to a more preferred embodiment, the SERMs is chosen from the group comprising raloxifene (Evista), bazedoxifene/premarin (Aprelal) and tamoxifen.

According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention for the treatment of diseases associated to an increased osteoclast activity. Such disease comprised but are not limited to endocrinopathies (hypercortisolism, hypogonadism, primary or secondary hyperparathyroidism, hyperthyroidism), hypercalcemia, deficiency states (rickets/osteomalacia, scurvy, malnutrition), chronic diseases (malabsorption syndromes, chronic renal failure (renal osteodystrophy), chronic liver disease (hepatic osteodystrophy), drugs (glucocorticoids (glucocorti-

coid-induced osteoporosis), androgen deprivation therapy, aromatase inhibitor therapy, heparin, alcohol), and hereditary (osteogenesis imperfecta, homocystinuria), osteoporosis, osteopetrosis, inflammation of bone associated with arthritis and rheumatoid arthritis, periodontal disease, 5 fibrous dysplasia, and/or Paget's disease.

According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention for the treatment of diseases associated to inflammation and/or autoimmunity. Such diseases comprise but are not limited to seronegative spondyloarthropathy (psoriatic arthritis, ankylosing spondylitis, reiters syndrome, spondyloarthropathy associated with inflammatory bowel disease), prosthetic joint loosening, connective tissue 15 diseases (juvenile rheumatoid arthritis, rheumatoid arthritis, systemic lupus erythematosus (SLE) and lupus nephritis, scleroderma, Sjogren's syndrome, mixed connective tissue disease, polymyositis, dermatomyositis), inflammatory bowel disease (e.g. Crohn's disease; ulcerative colitis), 20 whipples disease, arthritis associated with granulomatous ileocolitis, inflammatory skin conditions (autoimmune bullous pemphigoid, autoimmune pemphigus vulgaris, eczema, dermatitis), inflammatory lung disease (alveolitis, pulmonary fibrosis, sarcoidoisis, asthma, bronchitis, bronchi- 25 olitis obliterans), inflammatory renal disease (glomerulonethritis, renal allograft rejection, renal tubular inflammation), atherosclerosis, systemic vasculitis (temporal arteritis/giant cell arteritis, takayasu arteritis, polyarteritis nodosa, Kawasaki disease, Wegener's granulomatosis, churg strauss 30 syndrome, microscopic polyangiitis, necrotising glomerulonephritis, henoch schonlein purpura, essential cryoglobulinaemic vasculitis and other small vessel vasculitis, Behcets disease), macrophage activation diseases (macrophage activation syndrome (MAS), adult onset stills disease, haemoph- 35 agocytic syndrome), polymyalgia rheumatica, primary biliary sclerosis, sclerosing cholangitis, autoimmune hepatitis, Type 1 Diabetes Mellitus, Hashimoto's thyroiditis, Graves' disease, multiple sclerosis (MS), Guillain-Barre syndrome, Addison's disease, and/or Raynaud's phenomenon, Good- 40 pasture's syndrome.

According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention for the treatment of cancer.

As used herein, the term "cancer" refers but is not limited to adenocarcinoma, acinic cell adenocarcinoma, adrenal cortical carcinomas, alveoli cell carcinoma, anaplastic carcinoma, basaloid carcinoma, basal cell carcinoma, bronchiolar carcinoma, bronchogenic carcinoma, renaladinol carcinoma, 50 embryonal carcinoma, anometroid carcinoma, fibrolamolar liver cell carcinoma, follicular carcinomas, giant cell carcinomas, hepatocellular carcinoma, intraepidermal carcinoma, intraepithelial carcinoma, leptomanigio carcinoma, medulmesometonephric carcinoma, oat cell carcinoma, squamal cell carcinoma, sweat gland carcinoma, transitional cell carcinoma, tubular cell carcinoma, amelioblastic sarcoma, angiolithic sarcoma, botryoid sarcoma, endometrial stroma sarcoma, ewing sarcoma, fascicular sarcoma, giant cell sarcoma, 60 granulositic sarcoma, immunoblastic sarcoma, juxaccordial osteogenic sarcoma, coppices sarcoma, leukocytic sarcoma (leukemia), lymphatic sarcoma (lympho sarcoma), medullary sarcoma, myeloid sarcoma (granulocitic sarcoma), austiogenci sarcoma, periosteal sarcoma, reticulum cell sarcoma 65 (histiocytic lymphoma), round cell sarcoma, spindle cell sarcoma, synovial sarcoma, telangiectatic audiogenic sarcoma,

28

Burkitt's lymphoma, NPDL, NML, NH and diffuse lymphomas. According to a preferred embodiment, the method according to the invention is directed to the treatment of metastatic cancer to bone, wherein the metastatic cancer is breast, lung, renal, multiple myeloma, thyroid, prostate, adenocarcinoma, blood cell malignancies, including leukemia and lymphoma; head and neck cancers; gastrointestinal cancers, including esophageal cancer, stomach cancer, colon cancer, intestinal cancer, colorectal cancer, rectal cancer, pancreatic cancer, liver cancer, cancer of the bile duct or gall bladder; malignancies of the female genital tract, including ovarian carcinoma, uterine endometrial cancers, vaginal cancer, and cervical cancer; bladder cancer; brain cancer, including neuroblastoma; sarcoma, osteosarcoma; and skin cancer, including malignant melanoma or squamous cell cancer.

The present invention further concerns a method for improving the treatment of a cancer patient which is undergoing chemotherapeutic treatment with a cancer therapeutic agent, which comprises co-treatment of said patient along with a method as above disclosed.

The present invention further concerns a method of improving cytotoxic effectiveness of cytotoxic drugs or radiotherapy which comprises co-treating a patient in need of such treatment along with a method as above disclosed.

The present invention further concerns a method for improving the treatment of a patient with a disease associated to an increased osteoclast activity which is undergoing treatment with a biphosphonate, a selective oestrogen receptor modulators (SERMs), a parathyroid hormone (PTH) (e.g. teriparatide (Forteo)), strontium ranelate, Denosumab or calcitonin, or a combination thereof, which comprises co-treatment of said patient along with a method as above disclosed.

In another embodiment use of an antibody of the invention is contemplated in the manufacture of a medicament for preventing or treating metastatic cancer to bone in a patient suffering from metastatic cancer. In a related embodiment, the metastatic cancer is breast, lung, renal, multiple myeloma, thyroid, prostate, adenocarcinoma, blood cell malignancies, including leukemia or lymphoma; head or neck cancers; gastrointestinal cancers, including esophageal cancer, stomach cancer, colon cancer, intestinal cancer, colorectal cancer, rectal cancer, pancreatic cancer, liver cancer, cancer of the bile duct or gall bladder; malignancies of the female genital tract, including ovarian carcinoma, uterine endometrial cancers, vaginal cancer, or cervical cancer; bladder cancer; brain cancer, including neuroblastoma; sarcoma, osteosarcoma; or skin cancer, including malignant melanoma or squamous cell

According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention in the manufacture of a medica-

According to another embodiment, the present invention lary carcinoma, melanotic carcinoma, menigual carcinoma, 55 relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention in the manufacture of a medicament for treating a patient having cancer.

> According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention in the manufacture of a medicament for treating a patient having a disease associated to an increased osteoclast activity.

> According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts

according to the invention in the manufacture of a medicament for treating a patient having an inflammatory disease, more specifically an inflammatory bowel disease.

According to another embodiment, the present invention relates to the use of the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention in the manufacture of a medicament for treating a patient suffering from rheumatoid arthri-

Administering the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention may be accomplished by any means known to the skilled artisan. Preferred routes of administration include but are not limited to intradermal, 15 subcutaneous, oral, parenteral, intramuscular, intranasal, sublingual, intratracheal, inhalation, ocular, vaginal, and rectal. According to a preferred embodiment the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts according to the invention are 20 delivered systemically.

The administration may take place in a single dose or a dose repeated one or several times after a certain time interval. Desirably, the antibody, the nucleic acid sequence, the vector, the pharmaceutical composition or the kit of parts 25 according to the invention are administered 1 to 10 times at weekly intervals.

For general guidance, suitable dosage for the antibody is about 2 mg/kg to 30 mg/kg, 0.1 mg/kg to 30 mg/kg or 0.1 mg/kg to 10 mg/kg body weight. Suitable dosage for the vector according to the invention varies from about 10⁴ to 10¹⁰ pfu (plaque forming units), desirably from about 10⁵ and 10⁸ pfu for MVA vector whereas it varies from about 10⁵ to 10^{13} iu (infectious units), desirably from about 10^7 and 10^{12} iu for adenovirus based vector. A composition based on vector plasmids may be administered in doses of between 10 µg and 20 mg, advantageously between 100 µg and 2 mg.

When the use or the method according to the invention is for the treatment of cancer, the method or use of the invention 40 can be carried out in conjunction with one or more conventional therapeutic modalities (e.g. radiation, chemotherapy and/or surgery). The use of multiple therapeutic approaches provides the patient with a broader based intervention. In one embodiment, the method of the invention can be preceded or 45 followed by a surgical intervention. In another embodiment, it can be preceded or followed by radiotherapy (e.g. gamma radiation). Those skilled in the art can readily formulate appropriate radiation therapy protocols and parameters which can be used (see for example PEREZ. Principles and practice 50 of radiation oncology. 2nd edition. LIPPINCOTT, 1992.)

BRIEF DESCRIPTION OF FIGURES IN THE **DRAWINGS**

FIG. 1 depicts the specific staining of CSF-1R-transfected NIH/3T3 cells by mAb CXIIG6.

FIG. 2 shows the inhibition of CSF-1 binding to cellsurface CSF-1R in presence of mAb CXIIG6.

1R by mAb CXIIG6 ('ctrl' means control; 'neg SN' means negative control hybridoma supernatant).

FIG. 4 shows the inhibition of human osteoclast differentiation and secretion of matrix-metalloprotease-9 (MMP-9) in presence of mAb CXIIG6 ('ctrl' means control; 'CXIIG6 65 SN' means CXIIG6 hydridoma supernatant; 'neg SN' means negative control hybridoma supernatant).

30

FIG. 5 shows the non-cross-reactivity of mAb CXIIG6 with other tyrosine kinase receptors having homology to CSF-1R ('SN' means hydridoma supernatant).

FIG. 6 shows the nucleic acid sequence (SEQ ID NO: 1) and deduced amino acid sequence (SEQ ID NO: 2) of the CXIIG6 heavy chain. The primer sequences including restriction sites for cloning added to the nucleotide sequences are underlined. The restriction sites are shown in underlined italic type. The amino acid sequences of the V-domains are highlighted in bold type.

FIG. 7 shows the nucleic acid sequence (SEQ ID NO: 3) and deduced amino acid sequence (SEQ ID NO: 4) of the CXIIG6 light chain. The primer sequences including restriction sites for cloning added to the nucleotide sequences are underlined. The restriction sites are shown in underlined italic type. The amino acid sequences of the V-domains are highlighted in bold type.

FIG. 8 shows the plasmid construct pTG17753.

FIG. 9 shows the plasmid construct pTG17727.

FIG. 10 shows the plasmid construct pOptiVECTM.

FIG. 11 shows the plasmid construct pTG17895.

FIG. 12 shows the plasmid construct pTG17812.

FIG. 13 shows the plasmid construct pTG17868.

FIG. 14 shows the plasmid construct pTG17869.

FIG. 15 shows humanized CXIIG6 light chain variants.

FIG. 16 shows humanized CXIIG6 IgG1 heavy chain vari-

FIG. 17 shows the specific blockade of soluble human CSF-1R by recombinant murine CXIIG6 and chimeric CXIIG6 IgG1.

FIG. 18 shows, the inhibition of human osteoclast differentiation and secretion of matrix-metalloprotease-9 (MMP-9) in presence of recombinant murine CXIIG6 and chimeric CXIIG6 IgG1.

MODE(S) FOR CARRYING OUT THE INVENTION

Specific Staining of CSF-1R-Transfected NIH/3T3 Cells by mAb CXIIG6

The B4-800-5 cell line was generated by stable transfection of NIH/3T3 cells with an expression plasmid encoding the full-length human CSF-1R. Cell-surface CSF-1R expression on B4-800-5 cells was verified by indirect immunostaining with the anti-human CSF-1R mAbs 61701 (mouse IgG₁, R&D Systems) or 2-4A5-4 (rat IgG_{1,k}, GeneTex), compared to isotype controls (FIG. 1, upper and middle panels). Culture supernatants from hybridoma CXIIG6 or from a negative control hybridoma were used for immunostaining B4-800-5 cells or parental NIH/3T3 cells (FIG. 1, lower panels).

Flow cytometry analysis showed that culture supernatant from hybridoma CXIIG6 selectively stained B4-800-5 cells, 55 demonstrating the mAb specificity for cell-surface CSF-1R.

Inhibition of CSF-1 Binding to Cell-Surface CSF-1R

3×10⁵ THP-1 cells (human CSF-1R-positive monocytic FIG. 3 shows the specific blockade of soluble human CSF- 60 leukemia cell line) were incubated for 30 min at 4° C. in the presence of either hybridoma culture supernatants, serum from a naive or an anti-CSF-1R-immunized mouse (dilution 1:1000), mAb anti-CSF-1R 2-4A5-4 (GeneTex) or a control rat IgG₁ (10 μg/ml), or no reagent. After two washes with cold PBS, cells were incubated with 1 µg/ml biotinylated recombinant human CSF-1 for 30 min. Cells were washed twice and further incubated for 30 min at 4° C. with 10 μg/ml strepta-

vidin-Alexa Fluor 488 (Invitrogen). After washing with PBS and fixation with 4% paraformaldehyde, cell staining was analyzed by flow cytometry.

Decreased fluorescence intensities compared to control samples reflect the inhibition of CSF-1 binding to cell-surface ⁵ CSF-1R. Serum from a CSF-1R-immunized mouse blocks CSF-1 binding to THP-1 cells (FIG. **2**). While negative control hybridoma supernatant or an irrelevant mAb show no effect, culture supernatant from hybridoma CXIIG6 inhibits CSF-1 binding to THP-1 cells (FIG. **2**, lower right panel), as ¹⁰ does mAb 2-4A5-4 (lower left panel).

Localization of mAb CXIIG6 Binding Site

To identify the binding site of mAb CXIIG6 on the CSF-18, a Western blot was performed using soluble forms of the human CSF-1R comprising either the five extracellular immunoglobulin-like domains (Met 1 to Glu 512, R&D Systems) or only the three N-terminal immunoglobulin-like domains of the extracellular region of CSF-1R (Met 1 to Ser 20 290), both fused at their C-terminal ends to the Fc region of a human IgG₁. A soluble form of the EGFR fused to human IgG₁ Fc (R&D Systems) was used as a negative control.

Hundred nanograms of each soluble receptor were submitted to electrophoresis in native conditions before transfer to 25 nitrocellulose sheet and probing with either hybridoma supernatants, rabbit pAb c-fms/CSF-1R H300 (Santa Cruz Biotechnology), mouse mAb 61701 (R&D Systems) or serum from naive or CSF-1R-immunized mice.

Both soluble forms of the CSF-1R were detected as broad bands when probed with pAb c-fms/CSF-1R H300, mAb 61701 or serum from the immunized mouse. No detectable signals were observed with naive mouse serum or a negative control hybridoma supernatant. CXIIG6 hybridoma supernatant recognized CSF-1R₁₋₂₉₀:Fc as well as CSF-1R₁₋₅₁₂:Fc, 35 but not EGFR:Fc, indicating that CXIIG6 binds specifically to an epitope lying within the three N-terminal immunoglobulin-like domains (between residues 1 to 290) of the human CSF-1R.

Specific Blockade of Soluble Human CSF-1R by mAb CXIIG6

The CSF-1-dependent murine myeloid leukemia M-NFS-60 cell line (#CRL-1838, ATCC) was used to assess the 45 blocking activity of CXIIG6 hybridoma supernatant on human and murine CSF-1R. Five nanograms of soluble human CSF-1R (CSF-1R₁₋₅₁₂:Fc from R&D Systems) were preincubated in white 96-well microplates with serial dilutions of either hybridoma supernatants, mAb 61701 (R&D 50 Systems) or murine isotype control mAb. 10E4 M-NFS-60 cells cultured overnight in the absence of CSF-1 were then added into the culture wells together with 0.1 ng of human CSF-1 in a final assay volume of 100 µl. Cultures were incubated for 48 h at 37° C. and proliferation was quantified by 55 BrdU incorporation using a Cell Proliferation ELISA (Roche).

Soluble human CSF-1R completely inhibited the proliferation of M-NFS-60 cells mediated by human CSF-1, as shown in the presence of negative hybridoma supernatant containing 60 or not a negative control IgG_1 (FIG. 3; mean+/–SEM of 3 wells). In contrast, CXIIG6 hybridoma supernatant and positive control mAb 61701 were both able to restore cell proliferation in a dose-dependent manner, showing that they were able to neutralize soluble human CSF-1R.

In this assay, active M-NFS-60 cell proliferation in the presence of low dilutions of CXIIG6 hybridoma supernatant

32

showed that mAb CXIIG6 was unable to block the murine CSF-1R expressed by M-NFS-60 cells. Moreover, in a murine CSF-1-supported M-NFS-60 proliferation assay performed in the absence of soluble CSF-1R, treatment with mAb AFS98 anti-mouse CSF-1R (eBioscience) resulted in a dramatic concentration-dependent decrease of cell growth (data not shown). CXIIG6 hybridoma supernatant, like negative control antibodies and negative hybridoma supernatant, caused no reduction in cell proliferation. These results demonstrate that mAb CXIIG6 specifically targets human CSF-1R

Inhibition of Human Osteoclast Differentiation and Secretion of Matrix-Metalloprotease-9 (MMP-9)

Osteoclasts, were generated from human monocytes obtained by elutriation of PBMCs from a healthy blood donor. In brief, monocytes were seeded at 2×10E4 cells per well in 96-well plates and treated for 45 min with either hybridoma culture supernatants, mAbs anti-human CSF-1R 61701 (R&D Systems) or 2-4A5-4 (GeneTex), mAb antihuman CSF-1 26730 (R&D Systems), murine or rat isotype controls, or sera from naive and CSF-1R-immunized mice diluted in hybridoma culture medium. Complete a-MEM medium was added to the culture wells with or without human CSF-1 and RANKL (PeproTech, 25 and 40 ng/ml respectively). Hybridoma supernatants, mAbs or/and medium with or without cytokines were replenished every 3 days for 9 days. Conditioned culture supernatants were harvested on day 9 and assayed for total human MMP-9 using an ELISA assay (R&D Systems). Osteoclast formation was evaluated by staining of tartrate-resistant acid phosphatase (TRAP) using the leukocyte acid phosphatase kit from Sigma-Ald-

CSF-1+RANKL induced monocytes to differentiate into osteoclasts, defined as large multinucleated TRAP-positive cells, whereas no TRAP-positive osteoclasts were obtained in the absence of cytokines. Addition of 0.5 μg/ml anti-CSF-1 mAb 26730 completely abrogated osteoclast differentiation, as shown by lack of MMP-9 secretion. Anti-CSF-1R mAbs 61701 or 2-4A5-4 at the same concentration and immunized mouse serum (dilution 1:1000) inhibited osteoclast formation only partially (FIG. 4; with (+) or without (-) cytokines; mean+/-SEM of 3 wells; *: mean of 2 wells). Treatment with CXIIG6 hybridoma culture supernatant diluted 1:20 or 1:100 significantly reduced the level of MMP-9 production, compared with two negative control hybridoma supernatants (A, B). These results demonstrate that mAb CXIIG6 inhibits the differentiation of osteoclasts from human monocytes by blocking the function of cell surface CSF-1R.

Inhibition of the CSF-1-Dependent Phosphorylation of CSF-1R

The B4-800-5 cell line obtained by stable transfection of NIH/3T3 cells with a plasmid expressing human CSF-1R was used to investigate the effect of CXIIG6 hybridoma supernatant on CSF-1-dependent CSF-1R phosphorylation. Cells were seeded at 2×10E5 cells per 60-mm Petri dish and cultured for 48 to 72 h. Following serum deprivation for 1 h at 37° C., cells were treated for 1 h at 37° C. with culture medium containing either CXIIG6 hybridoma supernatant, mAb 2-4A5-4 (NeoMarkers) or isotype control mAbs (diluted in negative hybridoma supernatant), and then stimulated with 100 ng/ml hCSF-1 or left unstimulated for 5 min at 37° C. Cell layers were then lysed and total proteins were extracted. Ten μg proteins were analyzed by probing Western

33

blots with either the rabbit pAb c-fms/CSF-1R H300 or the rabbit pAb p-c-fms/CSF-1R (Tyr708)-R (Santa Cruz Biotechnology), followed by goat anti-rabbit immunoglobulinsHRP

In the absence of CSF-1, neither CXIIG6 hybridoma supernatant nor mAb 2-4A5-4 induced receptor phosphorylation as seen with the antibody specific for CSF-1R phosphorylated at position 708, showing that mAb CXIIG6 alone does not exert an agonistic effect. Upon stimulation with CSF-1, the amount of CSF-1R decreased in isotype control-treated cells compared with unstimulated cells, and CSF-1R was phosphorylated on Tyr708 (data not shown). Pretreatment with CXIIG6 hybridoma supernatant or with mAb 2-4A5-4 did not enhance CSF-1R disappearance. Phosphorylation of CSF-1R was decreased following treatment with CXIIG6 hybridoma supernatant or with mAb 2-4A5-4. These results show that mAb CXIIG6 is able to block the CSF-1-dependent phosphorylation of CSF-1R.

Cross-Reactivity of mAb CXIIG6

The cross-reactivity of mAb CXIIG6 was tested by ELISA on a series of purified soluble receptors belonging to the type III subfamily of tyrosine kinase receptors and showing homology to CSF-1R in their extracellular Ig-like domains: 25 soluble VEGFR-1, VEGFR-2, Flt-3 and PDGFR β (all four expressed as Fc fusion proteins), as well as PDGFR α and SCFR (c-kit) were obtained from R&D Systems and used for coating an ELISA plate. Soluble EGFR(R&D Systems), from the EGFR subfamily of tyrosine kinase receptors, was used as 30 a negative control.

Culture supernatants from either hybridoma CXIIG6 (CXIIG6 SN) or a negative control hybridoma, or the anti-CSF-1R mouse IgG₁ 61701 (R&D Systems) were incubated on the coated ELISA plate at antibody concentrations of 500 35 ng/ml. After washing the ELISA plate, bound antibodies were revealed using peroxidase-conjugated goat anti-mouse Ig (Sigma) and OD_(450-540 nm) was measured. Results depicted in FIG. 5 show that like mAb 61701, CXIIG6 strongly bound the CSF-1R while no specific signal was detected on any 40 other tyrosine kinase receptor. This shows that among the various type III tyrosine kinase receptors tested, CXIIG6 is specific for CSF-1R.

Construction of Expression Vectors for mAb CXIIG6

The OptiCHOTM Antibody Express Kit (Invitrogen, Catalog No. 12762-019) was used for the cloning of the genes encoding the CXIIG6 heavy and light chains in order to produce the mAb CXIIG6 in DG44 mammalian cell line. The 50 OptiCHOTM Antibody Express Kit includes: (1) The pOptiVECTM vector, a bicistronic plasmid that allows the cloning of the gene of interest downstream of CMV promoter. The transcription of the gene of interest is separated from the dihydrofolate reductase (DHFR) auxotrophic selection 55 marker by an internal ribosome entry site (IRES), allowing transcription of the gene of interest and of the selection marker on the same mRNA; (2) The pcDNATM 3.3 vector that allows the cloning of the gene of interest downstream of CMV promoter. The pcDNATM 3.3 contains a neomycin resistance 60 gene allowing selection using Geneticin®. The pOptiVEC™ and pcDNATM 3.3 vectors contain the TK poly-A sequence which directs proper processing of the 3' end of the mRNA of the gene of interest.

Specific primers (see Table 4) were synthesized and used 65 for the PCR amplification and cloning of the entire CXIIG6 heavy chain and light chain genes (respectively SEQ ID NO:1

34

and SEQ ID NO:3; see respectively FIG. **6** and FIG. **7**). The backward primers included the Kozak consensus sequence for efficient eukaryotic translation (KOZAK M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. *Nucleic Acids Res.* 1987, 15(20): 8125-8148.).

TABLE 4

	Primer	Sequence
10	OTG18929	GCCGCCACCATGTACTTGGGACTGAACTATGTATTC (SEQ ID NO: 30)
	OTG18930	GGAGATCTTCATTTACCCGGAGTCCGGGA (SEQ ID NO: 31)
15	OTG18931	GCCGCCACCATGAGTGTGCCCACTCAGGTCCTG (SEQ ID NO: 32)
	OTG18932	GCCCGGGCTAACACTCATTCCTGTTGAAGCTC (SEQ ID NO: 33)

CXIIG6 heavy chain was PCR amplified by using OTG18929 and OTG18930 with plasmid pTG17753 (FIG. 8) as template, and cloned into the vector pOptiVECTM-TOPO® (pOptiVECTM-TOPO® TA Cloning® Kit, Invitrogen, Catalog no. 12744-017-01) and the pcDNATM 3.3-TOPO® vectors (pcDNATM 3.3-TOPO® TA Cloning® Kit, Invitrogen, Catalog No. K8300-01) to obtain respectively pTG17786 and pTG17789.

CXIIG6 light chain was PCR amplified by using OTG18931 and OTG18932 with plasmid pTG17727 (FIG. 9) as template, and cloned into the vector pOptiVECTM-TOPO® (pOptiVECTM-TOPO® TA Cloning® Kit, Invitrogen, Catalog no. 12744-017-01) and the pcDNATM 3.3-TOPO® vectors (pcDNATM 3.3-TOPO® TA Cloning® Kit, Invitrogen, Catalog No. K8300-01) to obtain respectively pTG17788 and pTG17787.

The nucleotide sequence of the whole expression cassette, including CMV promoter and TK polyA signal of pTG17786, pTG17787, pTG17788 and pTG17789 were sequenced and found in compliance with their theoretical sequences.

Generation of Chimeric Antibodies from mAb CXIIG6

The variable domains of mAb CXIIG6 were combined with human constant regions.

To generate the chimeric light chain (named Chimeric CXIIG6 Iv chain), a theorical sequence was designed by joining the sequence encoding the CXIIG6 VK Domain (from SEQ ID NO:3) to the sequence encoding for the human IGKC region (GenBank accession number: J00241). This XbaI NotI DNA fragment kept the same non translated sequence at 5' end, including Kozak sequence, as the one used in the murine version (as in pTG17787 and pTG17788 described above). The chimeric CXIIG6 light chain sequence was codon optimized for expression in CHO, assembled from synthetic oligonucleotides, and subcloned into pOptiVECTM (FIG. 10) via XbaI NotI by GeneArt AG. The obtained chimeric CXIIG6 light chain (variable and constant regions) codon optimized nucleic acid sequence is as set forth in SEQ ID NO:34. The obtained plasmid was named pTG17895 (FIG. 11).

To generate the chimeric heavy IgG1 and IgG4 chains (respectively named Chimeric CXIIG6 IgG1 and Chimeric CXIIG6 IgG4 chains), the theorical sequences were designed by joining the sequence encoding the CXIIG6 VH Domain (from SEQ ID NO:1) to the sequences encoding either for the human IGHG1C region (GenBank accession number:

J00228) or for the human IGHG4C region (GenBank accession number: K01316). These XbaI NotI DNA fragments kept the same non translated sequence at 5' end, including Kozak sequence, as the one used in the murine version (as in pTG17786 and pTG17789 as described above). The chimeric CXIIG6 heavy chains were then codon optimized for expression in CHO, synthesized and cloned into pTG17812 (FIG. 12) via XbaI NotI by GeneArt AG. The obtained chimeric CXIIG6 IgG1 heavy chain (variable and constant regions) codon optimized nucleic acid sequence is as set forth in SEQ ID NO:35 and the obtained plasmids was named pTG17868 (FIG. 13). The obtained chimeric CXIIG6 IgG4 heavy chain (variable and constant regions) codon optimized nucleic acid sequence is as set forth in SEQ ID NO:36 and the obtained 15 plasmids was named pTG17869 (FIG. 14).

Generation of Human Antibodies from mAb CXIIG6

To generate the humanized light chain variants, amino acid $_{20}$ substitutions according to Table 2 were performed within the light-chain variable region as set forth in SEQ ID NO:9.

DNA sequences were designed by joining modified sequences bearing substitutions of the CXIIG6 VK Domain (from SEQ ID NO:3) to the sequence encoding for the human 25 IGKC region (GenBank accession number: J00241). This XbaI NotI DNA fragment kept the same non translated sequence at 5' end including Kozak sequence as the one used in the murine version (as in pTG17787 and pTG17788 as described above). The humanized CXIIG6 light chain 30 sequences were then codon optimized for expression in CHO, assembled from synthetic oligonucleotides and cloned into pOptiVECTM (FIG. 10) via XbaI NotI by GeneArt AG. The obtained humanized CXIIG6 light chain variants and plasmids are listed in FIG. 15.

To generate the humanized heavy chain variants, amino acid substitutions according to Table 1 were performed within the heavy-chain variable region as set forth in SEQ ID NO:6.

DNA sequences were designed by joining modified 40 sequences bearing substitutions of the CXIIG6 VH Domain (from SEQ ID NO:1) to the sequences encoding for the human IGHG1C region (GenBank accession number: J00228). The XbaI ApaI DNA fragments kept the same non translated sequence at 5' end including Kozak sequence as 45 used the one in the murine version (as in pTG17786 and pTG17789 as described above). The DNA sequences were then codon optimized for expression in CHO, synthesized and cloned into pTG17812 (FIG. 12) via XbaI ApaI by Gene-Art AG. The obtained humanized CXIIG6 IgG1 heavy chain 50 variants and plasmids are listed in FIG. 16.

In Vitro Inhibitory Activities of Recombinant Murine CXIIG6 and Chimeric CXIIG6 IgG1

To determine whether purified recombinant murine CXIIG6 (as previously described) and its chimeric IgG1 variant (chimeric CXIIG6 IgG1 as previously described) were able to block soluble human CSF-1R, dose-response studies were performed in the M-NFS-60 cell proliferation and 60 SCHOLL, et al. Anti-colony-stimulating factor-1 antibody osteoclast differentiation models (as previously described). Purified polyclonal murine IgG2a from Rockland (Rockland, 010-0141) and a chimeric IgG1 produced by the applicant were tested in parallel as control antibodies. Blocking effect was evaluated by exposing cells to concentration ranges of active anti-CSF-1R antibodies, as measured by antigen binding in a SPR biosensor assay. Comparison between mAbs

36

CXIIG6 and their respective control mAb was done by loading equal amounts of total antibody (SPR biosensor assay by Fe binding).

M-NFS-60 bioassay: In the M-NFS-60 bioassay, cells were treated with 0.23 ng/ml to 0.5 μg/ml active mAbs CXIIG6 (recombinant murine CXIIG6; chimeric CXIIG6 IgG1) or corresponding concentrations of control mAbs in the presence of 50 ng/ml human soluble CSF-1R and 1 ng/ml human CSF-1 for 48 h. Results depicted in FIG. 17 show that M-NFS-60 cell growth increased in response to increasing concentrations of both mAbs CXIIG6 (recombinant murine CXIIG6; chimeric CXIIG6 IgG1) demonstrating that they antagonized the binding of soluble CSF-1R to CSF-1 (mean+/-SEM of triplicate wells). Chimeric CXIIG6 IgG1 was as effective as recombinant murine CXIIG6 in restoring cell proliferation. Control murine IgG2a and chimeric IgG1 had no effect on CSF-1 neutralization by soluble CSF-1R over their respective concentration range.

Osteoclast bioassay: In the osteoclast bioassay, elutriated human monocytes were incubated for 8 days with 0.85 ng/ml to 0.62 µg/ml active mAbs CXIIG6 (recombinant murine CXIIG6; chimeric CXIIG6 IgG1) in the presence of 25 ng/ml CSF-1 (ImmunoTools) and 40 ng/ml RANKL. The medium and all added agents were replenished on day 4 and 6 and total MMP-9 was measured in culture media conditioned from day 6 to 8. Results depicted in FIG. 18 show that in comparison with control antibodies, recombinant murine CXIIG6 and its chimeric variant (chimeric CXIIG6 IgG1) each significantly reduced MMP-9 production which parallels osteoclast differentiation, indicating that growth retardation occurred (FIG. 18; mean+/-SEM of triplicate wells).

Taken together, these results further demonstrate that purified recombinant murine CXIIG6 and chimeric CXIIG6 IgG1 inhibit cell-surface as well as soluble human CSF-1R.

REFERENCES

WO 01/30381 WO 03/059395

WO 2005/068503

EP 1488792 A

US 2005059113

EP 901463 B

EP 83286 A

EP 206920 A

U.S. Pat. No. 5,747,323

WO 94/28152

WO 97/04119

WO 94/18992

WO 96/17070

SHERR. Colony-stimulating factor-1 receptor. blood. 1990, vol. 75, no. 1, p. 1-12.

HUME, et al. Regulation of CSF-1 receptor expression. Molecular reproduction and development. 1997, vol. 46, no. 1, p. 46-52.

KLUGER, et al. Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clinical cancer research. 2004, vol. 10, no. 1, p. 173-7.

staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. Journal of the National Cancer Institute. 1994, vol. 86, no. 2, p. 120-6.

65 CHAMBERS, et al. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer,

- contrasted with a protective effect of stromal CSF-1. Clinical Cancer Research. 1997, vol. 3, no. 6, p. 999-1007.
- BAÏOCCHI, et al. Expression of the macrophage colonystimulating factor and its receptor in gynecologic malignancies. Cancer. 1991, vol. 67, no. 4, p. 990-6.
- KIRMA, et al. Elevated expression of the oncogene c-fms and its ligand, the macrophage colony-stimulating factor-1, in cervical cancer and the role of transforming growth factorbeta1 in inducing c-fms expression. Cancer res. 2007, vol. 67, no. 5, p. 1918-26.
- HEMMERLEIN, et al. Expression of acute and late-stage inflammatory antigens, c-fms, CSF-1, and human monocytic serine esterase 1, in tumor-associated macrophages of renal cell carcinomas. Cancer immunology, immunotherapy. 2000, vol. 49, no. 9, p. 485-92.
- IDE, et al. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc. Natl. Acad. Sci. U.S.A. 2002, vol. 99, no. 22, p. 14404-9.
- RAMBALDI, et al. Expression of the macrophage colonystimulating factor and c-fms genes in human acute myeloblastic leukemia cells. Journal of Clinical Investigation. 1988, vol. 81, no. 4, p. 1030-5.
- SCHOLL, et al. Anti-colony-stimulating factor-1 antibody 25 staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. Journal of the National Cancer Institute. 1994, vol. 86, no. 2, p. 120-6.
- TANG, et al. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes?. Journal of cellular biochemistry. 1992, vol. 50, no. 4, p. 350-6.
- SCHOLL, et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. British journal of cancer. 1994, vol. 69, no. 2, p. 342-6.
- SCHOLL. Circulating levels of the macrophage colony 40 stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast cancer research and treatment. 1996, vol. 39, no. 3, p. 275-83.
- DORSCH, et al. Macrophage colony-stimulating factor gene transfer into tumor cells induces macrophage infiltration but not tumor suppression. European journal of immunology. 1993, vol. 23, no. 1, p. 186-90.
- WANG, et al. Induction of monocyte migration by recombinant macrophage colony-stimulating factor. Journal of immunology. 1988, vol. 141, no. 2, p. 575-9.
- FILDERMAN, et al. Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer res. 1992, vol. 52, no. 13, p. 3661-6.
- DORSCH, et al. Macrophage colony-stimulating factor gene 55 transfer into tumor cells induces macrophage infiltration but not tumor suppression. European journal of immunology. 1993, vol. 23, no. 1, p. 186-90.
- SCHOLL. Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast 60 cancer patients. A pilot study. Breast cancer research and treatment. 1996, vol. 39, no. 3, p. 275-83.
- BARON, et al. Modulation of MHC class II transport and lysosome distribution by macrophage-colony stimulating factor in human dendritic cells derived from monocytes. 65 JACKSON, et al. In vitro antibody maturation. Improvement Journal of cell science. 2001, vol. 114, no. pt5, p. 999-

- CECCHINI, et al. Role of CSF-1 in bone and bone marrow development. Molecular reproduction and development. 1997, vol. 46, no. 1, p. 75-83.
- BRUZZANITI, et al. Molecular regulation of osteoclast activity. Reviews in endocrine. 2006, vol. 7, no. 1-2, p. 123-39.
- CICEK, et al. Breast cancer bone metastasis and current small therapeutics. Cancer metastasis reviews. 2006, vol. 25, no. 4, p. 635-44.
- 10 KITAURA, et al. The journal of clinical investigation. M-CSF mediates TNF-induced inflammatory osteolysis. 2005, vol. 115, no. 12, p. 3418-27.
 - MARSHALL, et al. Blockade of colony stimulating factor-1 (CSF-I) leads to inhibition of DSS-induced colitis. Inflammatory bowel diseases. 2007, vol. 13, no. 2, p. 219-24.
 - JOSE, et al. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. American journal of transplantation. 2003, vol. 3, no. 3, p. 294-300.
- 20 KUTZA, et al. Macrophage colony-stimulating factor antagonists inhibit replication of HIV-1 in human macrophages. Journal of immunology. 2000, no. 164, p. 4955-
 - SMITH, et al. Identification of common molecular subsequences. Journal of Molecular Biology. 1981, no. 147, p. 195-7.
 - HARLOW. Antibodies: A Laboratory manual. 2nd edition. Cold Spring Harbor: Laboratory press, 1988.
 - HAMMERLING, et al. Monoclonal Antibodies and T Cell Hybridomas. New York: Elsevier, 1981. p. 563-681.
 - SMITH, et al. Identification of common molecular subsequences. Journal of Molecular Biology. 1981, no. 147, p. 195-7.
- LENNARD. Standard protocols for the construction of scFv libraries. Methods in molecular biology. 2002, no. 178, p. 59-71.
- POLJAK. Production and structure of diabodies. Structure. 1994, vol. 2, no. 12, p. 1121-3.
- HUDSON, et al. High avidity scFv multimers; diabodies and triabodies. Journal of immunological methods. 1999, vol. 231, no. 1-2, p. 177-89.
- KIPRIYANOV. Generation of bispecific and tandem diabodies. Methods in molecular biology. 2002, no. 178, p. 317-
- 45 HOLLIGER, et al. Engineered antibody fragments and the rise of single domains. Nature biotechnology. 2005, vol. 23, no. 9, p. 1126-36.
 - HOOGENBOOM, et al. Natural and designer binding sites made by phage display technology. Immunology today. 2000, vol. 21, no. 8, p. 371-8.
 - MARKS, et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology. 1992, vol. 10, no. 7, p. 779-83.
 - BARBAS, et al. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proceedings of the National Academy of Sciences of the United States of America. 1994, vol. 91, no. 9, p. 3809-13.
 - SCHIER. Identification of functional and structural aminoacid residues by parsimonious mutagenesis. Gene. 1996, vol. 169, no. 2, p. 147-55.
 - YELTON. Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J. immunol. 1995, vol. 155, no. 4, p. 1994-2004.
 - of a high affinity, neutralizing antibody against IL-1 beta. J. immunol. 1995, vol. 154, no. 7, p. 3310-9.

- HAWKINS, et al. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. Journal of molecular biology. 1992, vol. 226, no. 3, p. 889-96.
- SMITH, et al. Identification of common molecular subsequences. Journal of Molecular Biology. 1981, no. 147, p.
- BRENNAN, et al. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science. 1985, vol. 229, no. 4708, p. 81-3.
- SHALABY, et al. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. The Journal of experimental medicine. 1992, vol. 175, no. 1, p. 217-25.
- KOSTELNY, et al. Formation of a bispecific antibody by the use of leucine zippers. J. immunol. 1992, vol. 148, no. 5, p. 1547-33.
- ZAPATA, et al. Engineering linear F(ab')2 fragments for efficient production in Escherichia coli and enhanced antipro- 20 liferative activity. Protein engineering. 1995, vol. 8, no. 10, p. 1057-62.
- HERMANSON. Bioconjugate techniques. Academic press, 1996.
- HERMANSON. Bioconjugate techniques. Academic press, 25 1996. p. 118-228.
- HERMANSON. Bioconjugate techniques. Academic press, 1996. p. 229-285.
- FELGNER, et al. Cationic liposome mediated transfection. Proceedings of the Western Pharmacology Society. 1989, 30 vol. 32, p. 115-21.
- HODGSON, et al. Virosomes: cationic liposomes enhance retroviral transduction. Nature biotechnology. 1996, vol. 14, no. 3, p. 339-42.
- REMY, et al. Gene transfer with a series of lipophilic DNA- 35 binding molecules. Bioconjugate chemistry. 1994, vol. 5, no. 6, p. 647-54.
- LATHE, et al. Plasmid and bacteriophage vectors for excision of intact inserts. Gene. 1987, vol. 57, no. 2-3, p. 193-201.
- LUPTON, et al. Mapping genetic elements of Epstein-Barr 40 virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Molecular and cellular biology. 1985, vol. 5, no. 10, p. 2533-42.
- YATES, et al. Stable replication of plasmids derived from 45 Epstein-Barr virus in various mammalian cells. Nature. 1985, vol. 313, no. 6005, p. 812-5.
- SUMMERS, et al. Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability. Cell. 50 1984, vol. 36, no. 4, p. 1097-103.
- SUTTER, et al. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. U.S.A. 1992, vol. 89, no. 22, p. 10847-51.
- highly attenuated vaccinia virus MVA and their influence on virulence. The Journal of general virology. 1991, vol. 72, no. Pt5, p. 1031-8.
- SUTTER, et al. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vac- 60 cinia virus stimulates protective immunity in mice to influenza virus. Vaccine. 1994, vol. 12, no. 11, p. 1032-40.
- GRAHAM, et al. Methods in molecular biology. Edited by MURREY. The human press inc, 1991. p. 109-128.
- ZAKHARCHUK, et al. Physical mapping and homology 65 CHOTHIA and LESK. Canonical structures for the hyperstudies of egg drop syndrome (EDS-76) adenovirus DNA Archives of virology. 1993, vol. 128, no. 1-2, p. 171-6.

- SPIBEY, et al. Molecular cloning and restriction endonuclease mapping of two strains of canine adenovirus type 2. The Journal of general virology. 1989, vol. 70, no. Pt 1, p. 165-72.
- JOUVENNE, et al. Cloning, physical mapping and crosshybridization of the canine adenovirus types 1 and 2 genomes. Gene. 1987, vol. 60, no. 1, p. 21-8.
- MITTAL, et al. Development of a bovine adenovirus type 3-based expression vector. The Journal of general virology. 1995, vol. 76, no. Pt 1, p. 93-102.
- BISCHOFF, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996, vol. 274, no. 5286, p. 373-6.
- HEISE, et al. An adenovirus EIA mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Medicine. 2000, vol. 6, no. 10, p. 1134-9.
- FUEYO, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000, vol. 19, no. 1, p. 2-12.
- MCIVOR. Human purine nucleoside phosphorylase and adenosine deaminase: gene transfer into cultured cells and murine hematopoietic stem cells by using recombinant amphotropic retroviruses. Molecular and cellular biology. 1987, vol. 7, no. 2, p. 838-46.
- TABIN, et al. Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Molecular and cellular biology. 1982, vol. 2, no. 4, p. 426-36.
- TAKEBE, et al. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Molecular and cellular biology. 1988, vol. 8, no. 1, p. 466-72.
- CHEN, et al. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. The Journal of clinical investigation. 1995, vol. 96, no. 6, p. 2775-82.
- SCHREWE, et al. Cloning of the complete gene for carcinoembryonic antigen: analysis of its promoter indicates a region conveying cell type-specific expression. Molecular and cellular biology. 1990, vol. 10, no. 6, p. 2738-48.
- VILE, et al. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer res. 1993, vol. 53, no. 17, p. 3860-4.
- HARRIS, et al. Gene therapy for cancer using tumour-specific prodrug activation. Gene therapy. 1994, vol. 1, no. 3, p. 170-5.
- MEYER, et al. Mapping of deletions in the genome of the 55 KANAI, et al. In vivo gene therapy for alpha-fetoproteinproducing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer res. 1997, vol. 57, no. 3, p. 461-5.
 - PEREZ. Principles and practice of radiation oncology. 2nd edition. LIPPINCOTT, 1992.
 - KOZAK M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987, 15(20): 8125-8148.
 - variable regions of immunoglobulins (1987) J Mol. Biol. 1987 Aug. 20; 196(4):901-17.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 36
<210> SEQ ID NO 1
<211> LENGTH: 1404
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 1
atgtacttgg gactgaacta tgtattcata gtttttctcc taaatggtgt ccagagtgaa
                                                                      60
gtgaagcttg aggagtctgg aggaggcttg gtgcagcctg gaggatccat gaaactctct
                                                                     120
tgtgctgcct ctggattcac ttttagtgac gcctggatgg actgggtccg ccagtctcca
                                                                     180
gagatgggac ttgagtgggt tgctgaaatt agaagcaaag ctaataatca tgcaacattc
                                                                     240
tatgctgagt ctgtgaaagg gaggttcacc atctcaagag atgattccaa aagtagtgtc
                                                                     300
tacctgcaaa tgaacagctt aagacctgaa gacactggca tttattactg taccagggta
                                                                     360
aaggtagget ttgacaactg gggccaagge accactetea cagteteete agccaaaaca
                                                                     420
acageceeat eggtetatee actggeeeet gtgtgtggag atacaactgg eteeteggtg
                                                                     480
actotaggat gcctggtcaa gggttatttc cctgagccag tgaccttgac ctggaactct
                                                                     540
ggateeetgt ceagtggtgt geacacette ceagetgtee tgeagtetga eetetacaee
                                                                     600
ctcagcagct cagtgactgt aacctcgagc acctggccca gccagtccat cacctgcaat
                                                                      660
gtggcccacc cggcaagcag caccaaggtg gacaagaaaa ttgagcccag agggcccaca
                                                                     720
atcaagccct gtcctccatg caaatgccca gcacctaacc tcttgggtgg accatccgtc
                                                                     780
ttcatcttcc ctccaaagat caaggatgta ctcatgatct ccctgagccc catagtcaca
                                                                     840
tgtgtggtgg tggatgtgag cgaggatgac ccagatgtcc agatcagctg gtttgtgaac
                                                                     900
aacgtggaag tacacacagc tcagacacaa acccatagag aggattacaa cagtactctc
                                                                     960
egggtggtea gtgeeeteee cateeageae caggaetgga tgagtggeaa ggagtteaaa
                                                                     1020
                                                                     1080
tgcaaggtca acaacaaaga ceteceageg cecategaga gaaccatete aaaaceeaaa
gggtcagtaa gagctccaca ggtatatgtc ttgcctccac cagaagaaga gatgactaag
                                                                    1140
aaacaggtca ctctgacctg catggtcaca gacttcatgc ctgaagacat ttacgtggag
                                                                    1200
tggaccaaca acgggaaaac agagctaaac tacaagaaca ctgaaccagt cctggactct
                                                                    1260
gatggttctt acttcatgta cagcaagctg agagtggaaa agaagaactg ggtggaaaga
                                                                     1320
aatagctact cctgttcagt ggtccacgag ggtctgcaca atcaccacac gactaagagc
                                                                    1380
                                                                     1404
ttctcccgga ctccgggtaa atga
<210> SEQ ID NO 2
<211> LENGTH: 467
<212> TYPE: PRT
<213 > ORGANISM: mus musculus
<400> SEQUENCE: 2
Met Tyr Leu Gly Leu Asn Tyr Val Phe Ile Val Phe Leu Leu Asn Gly
                                    10
Val Gln Ser Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln
Pro Gly Gly Ser Met Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
Ser Asp Ala Trp Met Asp Trp Val Arg Gln Ser Pro Glu Met Gly Leu
                        55
Glu Trp Val Ala Glu Ile Arg Ser Lys Ala Asn Asn His Ala Thr Phe
```

65					70					75					80
Tyr	Ala	Glu	Ser	Val 85	Lys	Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asp 95	Ser
Lys	Ser	Ser	Val 100	Tyr	Leu	Gln	Met	Asn 105	Ser	Leu	Arg	Pro	Glu 110	Asp	Thr
Gly	Ile	Tyr 115	Tyr	СЛа	Thr	Arg	Val 120	Lys	Val	Gly	Phe	Asp 125	Asn	Trp	Gly
Gln	Gly 130	Thr	Thr	Leu	Thr	Val 135	Ser	Ser	Ala	Lys	Thr 140	Thr	Ala	Pro	Ser
Val 145	Tyr	Pro	Leu	Ala	Pro 150	Val	CÀa	Gly	Asp	Thr 155	Thr	Gly	Ser	Ser	Val 160
Thr	Leu	Gly	CÀa	Leu 165	Val	ГÀа	Gly	Tyr	Phe 170	Pro	Glu	Pro	Val	Thr 175	Leu
Thr	Trp	Asn	Ser 180	Gly	Ser	Leu	Ser	Ser 185	Gly	Val	His	Thr	Phe 190	Pro	Ala
Val	Leu	Gln 195	Ser	Asp	Leu	Tyr	Thr 200	Leu	Ser	Ser	Ser	Val 205	Thr	Val	Thr
Ser	Ser 210	Thr	Trp	Pro	Ser	Gln 215	Ser	Ile	Thr	Сув	Asn 220	Val	Ala	His	Pro
Ala 225	Ser	Ser	Thr	Lys	Val 230	Asp	Lys	Lys	Ile	Glu 235	Pro	Arg	Gly	Pro	Thr 240
Ile	Lys	Pro	Cys	Pro 245	Pro	Càa	Lys	Cys	Pro 250	Ala	Pro	Asn	Leu	Leu 255	Gly
Gly	Pro	Ser	Val 260	Phe	Ile	Phe	Pro	Pro 265	Lys	Ile	Lys	Asp	Val 270	Leu	Met
Ile	Ser	Leu 275	Ser	Pro	Ile	Val	Thr 280	Cys	Val	Val	Val	Asp 285	Val	Ser	Glu
Asp	Asp 290	Pro	Asp	Val	Gln	Ile 295	Ser	Trp	Phe	Val	Asn 300	Asn	Val	Glu	Val
His 305	Thr	Ala	Gln	Thr	Gln 310	Thr	His	Arg	Glu	Asp 315	Tyr	Asn	Ser	Thr	Leu 320
Arg	Val	Val	Ser	Ala 325	Leu	Pro	Ile	Gln	His 330	Gln	Asp	Trp	Met	Ser 335	Gly
ГÀа	Glu	Phe	Lys 340	CAa	Lys	Val	Asn	Asn 345	Lys	Asp	Leu	Pro	Ala 350	Pro	Ile
Glu	Arg	Thr 355	Ile	Ser	Lys	Pro	Lys 360	Gly	Ser	Val	Arg	Ala 365	Pro	Gln	Val
Tyr	Val 370	Leu	Pro	Pro	Pro	Glu 375	Glu	Glu	Met	Thr	380 TÀa	Lys	Gln	Val	Thr
Leu 385	Thr	Cys	Met	Val	Thr 390	Asp	Phe	Met	Pro	Glu 395	Asp	Ile	Tyr	Val	Glu 400
Trp	Thr	Asn	Asn	Gly 405	Lys	Thr	Glu	Leu	Asn 410	Tyr	Lys	Asn	Thr	Glu 415	Pro
Val	Leu	Asp	Ser 420	Asp	Gly	Ser	Tyr	Phe 425	Met	Tyr	Ser	ГÀв	Leu 430	Arg	Val
Glu	Lys	Lys 435	Asn	Trp	Val	Glu	Arg 440	Asn	Ser	Tyr	Ser	Cys 445	Ser	Val	Val
His	Glu 450	Gly	Leu	His	Asn	His 455	His	Thr	Thr	Lys	Ser 460	Phe	Ser	Arg	Thr
Pro 465	Gly	Lys													

45 46

-continued

<211> LENGTH: 705 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 3 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt gacatocaga tgactcagto tocagootoo otatotgtat otgtgggaga aactgtcaco atcacatgtc gagcaagtga gaatatttac agtaatttag catggtatca gcagaaacag ggaaaatctc ctcagctcct ggtccatgct gcaacaaact tagcagatgg tgtgccatca aggttcagtg gcagtggatc aggcacacag tattccctca agatcaacag cctgcagtct gaagattttg ggagttatta ctgtcaacat ttttggggta ctcctcggac gttcggtgga ggcaccaagt tggaaatcaa acgggctgat gctgcaccaa ctgtatccat cttcccacca tccagtgagc agttaacate tggaggtgce tcagtegtgt gettettgaa caaettetae cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 660 705 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag <210> SEO ID NO 4 <211> LENGTH: 234 <212> TYPE: PRT <213 > ORGANISM: mus musculus <400> SEQUENCE: 4 Met Ser Val Pro Thr Gln Val Leu Gly Leu Leu Leu Trp Leu Thr Asp Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 25 Val Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn Ile Tyr Ser Asn Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 55 Gln Leu Leu Val His Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn Ser Leu Gln Ser Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp Gly Thr Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 150 Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 185 Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg 200

His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro

```
Ile Val Lys Ser Phe Asn Arg Asn Glu Cys
225
                  230
<210> SEQ ID NO 5
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 5
Met Tyr Leu Gly Leu Asn Tyr Val Phe Ile Val Phe Leu Leu Asn Gly
Val Gln Ser
<210> SEQ ID NO 6
<211> LENGTH: 118
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 6
Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
Trp Met Asp Trp Val Arg Gln Ser Pro Glu Met Gly Leu Glu Trp Val
                          40
Ala Glu Ile Arg Ser Lys Ala Asn Asn His Ala Thr Phe Tyr Ala Glu
                 55
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ser
                  70
Val Tyr Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Gly Ile Tyr
                                 90
Tyr Cys Thr Arg Val Lys Val Gly Phe Asp Asn Trp Gly Gln Gly Thr
         100
                              105
Thr Leu Thr Val Ser Ser
     115
<210> SEQ ID NO 7
<211> LENGTH: 330
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 7
Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly
Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr
Phe Pro Glu Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu
                     55
Ser Ser Ser Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile
Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys
Ile Glu Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys
Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro
```

_			115					120					125			
L	Уs	Ile 130	Lys	Asp	Val	Leu	Met 135	Ile	Ser	Leu	Ser	Pro 140	Ile	Val	Thr	Cys
	al 45	Val	Val	Asp	Val	Ser 150	Glu	Asp	Asp	Pro	Asp 155	Val	Gln	Ile	Ser	Trp 160
P	he	Val	Asn	Asn	Val 165	Glu	Val	His	Thr	Ala 170	Gln	Thr	Gln	Thr	His 175	Arg
G	lu	Asp	Tyr	Asn 180	Ser	Thr	Leu	Arg	Val 185	Val	Ser	Ala	Leu	Pro 190	Ile	Gln
Н	is	Gln	Asp 195	Trp	Met	Ser	Gly	Lys 200	Glu	Phe	Lys	СЛа	Lys 205	Val	Asn	Asn
L	Уs	Asp 210	Leu	Pro	Ala	Pro	Ile 215	Glu	Arg	Thr	Ile	Ser 220	Lys	Pro	Lys	Gly
	er 25	Val	Arg	Ala	Pro	Gln 230	Val	Tyr	Val	Leu	Pro 235	Pro	Pro	Glu	Glu	Glu 240
M	et	Thr	Lys	Lys	Gln 245	Val	Thr	Leu	Thr	Cys 250	Met	Val	Thr	Asp	Phe 255	Met
P	ro	Glu	Asp	Ile 260	Tyr	Val	Glu	Trp	Thr 265	Asn	Asn	Gly	Lys	Thr 270	Glu	Leu
A	sn	Tyr	Lys 275	Asn	Thr	Glu	Pro	Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Tyr	Phe
М	et	Tyr 290	Ser	Lys	Leu	Arg	Val 295	Glu	Lys	Lys	Asn	Trp 300	Val	Glu	Arg	Asn
	er 05	Tyr	Ser	Cys	Ser	Val 310	Val	His	Glu	Gly	Leu 315	His	Asn	His	His	Thr 320
Т	hr	Lys	Ser	Phe	Ser 325	Arg	Thr	Pro	Gly	Lys						
	210	15 CT	יד מי	רוא ר	Q											
<	211	> LE	ENGTI) NO 1: 20												
<	211 212	> LE > TY	ENGTI (PE :	H: 20)	mus	culus	₹								
<	211 212 213	> LE > T\ > OF	ENGTH (PE : RGAN)	H: 20) Mus	muso	culus	3								
< <	211 212 213 400 et	.> LE :> TY :> OF :> SE	ENGTH PE: RGANI EQUEN	H: 20 PRT ISM: NCE:	Mus 8		culus Val		Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Thr
< < < < M	211 212 213 400 et	> LE > T) > OF > SE	ENGTH PE: RGANI EQUEN	H: 20 PRT ISM: NCE: Pro	Mus 8 Thr				Gly		Leu	Leu	Leu	Trp		Thr
< < < < M	211 212 213 400 et	.> LE :> TY :> OF :> SE Ser	ENGTH /PE: RGANI EQUEN Val Arg	H: 20 PRT ISM: NCE: Pro Cys 20	Mus 8 Thr 5				Gly		Leu	Leu	Leu	Trp		Thr
< < < < < < < < < < < < < < < < < < <	211 212 213 400 et sp 210 211	.> LE :> TY :> OF :> SE Ser Ala :> LE	ENGTH YPE: RGANI EQUEN Val Arg EQ II ENGTH	H: 20 PRT ISM: NCE: Pro Cys 20 NO H: 10	Mus 8 Thr 5				Gly		Leu	Leu	Leu	Trp		Thr
< < < < < < < < < < < < < < < < < < <	211 212 213 400 et sp 210 211 212	.> LE:> TY:	ENGTH PE: RGANI EQUEN Val Arg EQ II ENGTH PE:	H: 20 PRT ISM: NCE: Pro Cys 20 NO H: 10 PRT	Mus 8 Thr 5	Gln		Leu	Gly		Leu	Leu	Leu	Trp		Thr
< < < < < < < < < < < < < < < < < < <	211 212 213 400 et sp 210 211 212 213	> LH	ENGTH (PE: RGAN) EQUEN Arg EQ II ENGTH (PE: RGAN)	H: 20 PRT ISM: NCE: Pro Cys 20 NO H: 10 PRT	Mus 8 Thr 5	Gln	Val	Leu	Gly		Leu	Leu	Leu	Trp		Thr
< < < < < < < < < < < < < < < < < < <	211 212 213 400 et sp 210 211 212 213 400	> LH	ENGTH (PE: (PGAN) (PE: (PGAN) Val Arg (PE: (PE: (PE: (PGAN)	H: 20 PRT ISM: Pro Cys 20 NO NO H: 10 PRT ISM: NCE:	Mus 8 Thr 5 9 07 Mus	Gln	Val	Leu		10				-	15	
< < < < < < < A	211 212 213 400 et sp 210 211 212 213 400 sp	> LE > TY > OF Ser Ala > SEE > LE > TY > OF	ENGTH (PE: (PE: (PE: (PE: Val Val Arg ENGTH (PE: (PE: (PE: GAN)	H: 20 PRT ISM: NCE: Pro Cys 20 NO NO H: 10 PRT ISM: Met	Mus 8 Thr 5 9 7 Mus 9 Thr 5	Gln musc	Val culus	Leu	Ala	10 Ser 10	Leu	Ser	Val	Ser	15 Val 15	Gly
<pre>< < <</pre>	211 212 213 400 et sp 210 211 212 213 400 sp	> LE STY SET	ENGTH (PE: (PE: (PE: (PE: (PE) (PE: (PE: (PE: (PE: (PE: (PE: (PE: (PE:	H: 20 PRT ISM: ISM: Pro Cys 20 O NO H: 10 PRT ISM: MCE: Thr 20	Mus 8 Thr 5 9 7 Mus 9 Thr 5 Ille	Gln musc Gln	Val culus Ser	Leu Pro	Ala Ala 25	Ser 10	Leu Glu	Ser Asn	Val Ile	Ser Tyr 30	Val 15 Ser	Gly
<pre>< < <</pre>	2112213400 et sp 2102213400 sp lu eu	> LE STY > OF SET SET Ala SET	ENGTH (PE: RGAN) (PE: RGAN) Val Val Arg EQ III (PE: RGAN) Val Val	H: 20 PRT ISM: NCE: Pro Cys 20 NO H: 11 PRT ISM: NCE: Met Thr 20 Tyr	Mus 8 Thr 5 9 7 Mus 9 Thr 5 Ile	Gln musc Gln Thr	Val Ser Cys	Leu Pro Arg Gln 40	Ala Ala 25 Gly	Ser 10 Ser	Leu Glu Ser	Ser Asn Pro	Val Ile Gln 45	Ser Tyr 30 Leu	Val 15 Ser Leu	Gly Asn Val
<pre> <</pre>	2112213 400 et sp 2102112 213 400 sp lu eu is	> LE STY OF SET Ala SET THE SE	ENGTH (PE: RGAN) Val Arg EQ II ENGTH (PE: RGAN) Val Trp 35	H: 20 PRT ISM: ISM: Pro Cys 20 O NO H: 10 PRT ISM: MCE: McT Thr Thr	Mus 8 Thr 5 9 77 Mus 9 Thr 5 Ile Gln	Gln musc Gln Thr Leu	Val Ser Cys Lys	Leu Pro Arg Gln 40 Asp	Ala Ala 25 Gly	Ser 10 Ser Lys	Leu Glu Ser Pro	Ser Asn Pro Ser 60	Val Ile Gln 45 Arg	Ser Tyr 30 Leu	Val 15 Ser Leu	Gly Asn Val
<pre><</pre>	211 212 213 400 et sp 210 211 212 213 400 sp lu eu is	> LE STY > OF SET Ala STY > OF TY SET THE THE THE THE THE THE THE THE THE T	ENGTH (PE: RGAN) SQUEN Val Arg ENGTH (PE: RGAN) Val Trp 35 Ala Ser	H: 20 PRT ISM: ISM: ISM: Pro Cys 20 O NO H: 10 PRT ISM: Met Thr 20 Tyr Gly	Mus 8 Thr 5 9 7 Mus 9 Thr 5 Ile Gln Asn	Gln Thr Gln Leu Gln 70	Val Ser Cys Lys Ala	Pro Arg Gln 40 Asp	Ala Ala 25 Gly Gly Leu	Ser 10 Ser Lys Val	Leu Glu Ser Pro Ile 75	Ser Asn Pro Ser 60 Asn	Val Ile Gln 45 Arg Ser	Ser Tyr 30 Leu Phe	Val 15 Ser Leu Ser	Gly Asn Val Gly Ser 80

```
90
                                                        95
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
           100
<210> SEQ ID NO 10
<211> LENGTH: 107
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 10
Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu
Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe
Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg _{35} 40 45
Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser
Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu
                  70
Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser
Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys
           100
<210> SEQ ID NO 11
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 11
Gly Phe Thr Phe Ser Asp Ala Trp
1 5
<210> SEQ ID NO 12
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 12
Ile Arg Ser Lys Ala Asn Asn His Ala Thr
1 5
<210> SEQ ID NO 13
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 13
Thr Arg Val Lys Val Gly Phe Asp Asn
<210> SEQ ID NO 14
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 14
Glu Asn Ile Tyr Ser Asn
             5
```

```
<210> SEQ ID NO 15
<211> LENGTH: 3
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 15
Ala Ala Thr
<210> SEQ ID NO 16
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 16
Gln His Phe Trp Gly Thr Pro Arg Thr
1 5
<210> SEQ ID NO 17
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 17
Asp Ala Trp Met Asp
<210> SEQ ID NO 18
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 18
Glu Ile Arg Ser Lys Ala Asn Asn His Ala Thr Phe Tyr Ala Glu Ser
                                   10
Val Lys Gly
<210> SEQ ID NO 19
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 19
Val Lys Val Gly Phe Asp Asn
<210> SEQ ID NO 20
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 20
Arg Ala Ser Glu Asn Ile Tyr Ser Asn Leu Ala
                                  10
1
            5
<210> SEQ ID NO 21
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 21
Ala Ala Thr Asn Leu Ala Asp
1
             5
```

```
<210> SEQ ID NO 22
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 22
Gln His Phe Trp Gly Thr Pro Arg Thr
<210> SEQ ID NO 23
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 23
Gly Phe Thr Phe Ser Asp Ala
<210> SEQ ID NO 24
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 24
Arg Ser Lys Ala Asn Asn His Ala
              5
<210> SEQ ID NO 25
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 25
Val Lys Val Gly Phe Asp Asn
<210> SEQ ID NO 26
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 26
Arg Ala Ser Glu Asn Ile Tyr Ser Asn Leu Ala
<210> SEQ ID NO 27
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 27
Ala Ala Thr Asn Leu Ala Asp
<210> SEQ ID NO 28
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 28
Gln His Phe Trp Gly Thr Pro Arg Thr
1 5
<210> SEQ ID NO 29
<211> LENGTH: 972
```

-continued <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 29 Met Gly Pro Gly Val Leu Leu Leu Leu Val Ala Thr Ala Trp His Gly Gln Gly Ile Pro Val Ile Glu Pro Ser Val Pro Glu Leu Val Val Lys Pro Gly Ala Thr Val Thr Leu Arg Cys Val Gly Asn Gly Ser Val Glu Trp Asp Gly Pro Pro Ser Pro His Trp Thr Leu Tyr Ser Asp Gly Ser Ser Ser Ile Leu Ser Thr Asn Asn Ala Thr Phe Gln Asn Thr Gly Thr Tyr Arg Cys Thr Glu Pro Gly Asp Pro Leu Gly Gly Ser Ala Ala Ile His Leu Tyr Val Lys Asp Pro Ala Arg Pro Trp Asn Val Leu Ala Gln Glu Val Val Phe Glu Asp Gln Asp Ala Leu Leu Pro Cys Leu 120 Leu Thr Asp Pro Val Leu Glu Ala Gly Val Ser Leu Val Arg Val Arg 135 Gly Arg Pro Leu Met Arg His Thr Asn Tyr Ser Phe Ser Pro Trp His Gly Phe Thr Ile His Arg Ala Lys Phe Ile Gln Ser Gln Asp Tyr Gln 170 Cys Ser Ala Leu Met Gly Gly Arg Lys Val Met Ser Ile Ser Ile Arg 185 Leu Lys Val Gln Lys Val Ile Pro Gly Pro Pro Ala Leu Thr Leu Val 200 Pro Ala Glu Leu Val Arg Ile Arg Gly Glu Ala Ala Gln Ile Val Cys Ser Ala Ser Ser Val Asp Val Asn Phe Asp Val Phe Leu Gln His Asn 230 235 Asn Thr Lys Leu Ala Ile Pro Gln Gln Ser Asp Phe His Asn Asn Arg Tyr Gln Lys Val Leu Thr Leu Asn Leu Asp Gln Val Asp Phe Gln His Ala Gly Asn Tyr Ser Cys Val Ala Ser Asn Val Gln Gly Lys His Ser Thr Ser Met Phe Phe Arg Val Val Glu Ser Ala Tyr Leu Asn Leu Ser Ser Glu Gln Asn Leu Ile Gln Glu Val Thr Val Gly Glu Gly Leu Asn 310 Leu Lys Val Met Val Glu Ala Tyr Pro Gly Leu Gln Gly Phe Asn Trp Thr Tyr Leu Gly Pro Phe Ser Asp His Gln Pro Glu Pro Lys Leu Ala 345 Asn Ala Thr Thr Lys Asp Thr Tyr Arg His Thr Phe Thr Leu Ser Leu Pro Arg Leu Lys Pro Ser Glu Ala Gly Arg Tyr Ser Phe Leu Ala Arg 375 Asn Pro Gly Gly Trp Arg Ala Leu Thr Phe Glu Leu Thr Leu Arg Tyr

Pro	Pro	Glu	Val	Ser 405	Val	Ile	Trp	Thr	Phe 410	Ile	Asn	Gly	Ser	Gly 415	Thr
Leu	Leu	Сув	Ala 420	Ala	Ser	Gly	Tyr	Pro 425	Gln	Pro	Asn	Val	Thr 430	Trp	Leu
Gln	Cys	Ser 435	Gly	His	Thr	Asp	Arg 440	Cys	Asp	Glu	Ala	Gln 445	Val	Leu	Gln
Val	Trp 450	Asp	Asp	Pro	Tyr	Pro 455	Glu	Val	Leu	Ser	Gln 460	Glu	Pro	Phe	His
Lys 465	Val	Thr	Val	Gln	Ser 470	Leu	Leu	Thr	Val	Glu 475	Thr	Leu	Glu	His	Asn 480
Gln	Thr	Tyr	Glu	Сув 485	Arg	Ala	His	Asn	Ser 490	Val	Gly	Ser	Gly	Ser 495	Trp
Ala	Phe	Ile	Pro 500	Ile	Ser	Ala	Gly	Ala 505	His	Thr	His	Pro	Pro 510	Asp	Glu
Phe	Leu	Phe 515	Thr	Pro	Val	Val	Val 520	Ala	Cys	Met	Ser	Ile 525	Met	Ala	Leu
Leu	Leu 530	Leu	Leu	Leu	Leu	Leu 535	Leu	Leu	Tyr	Lys	Tyr 540	ГÀа	Gln	ГЛа	Pro
Lys 545	Tyr	Gln	Val	Arg	Trp 550	Lys	Ile	Ile	Glu	Ser 555	Tyr	Glu	Gly	Asn	Ser 560
Tyr	Thr	Phe	Ile	Asp 565	Pro	Thr	Gln	Leu	Pro 570	Tyr	Asn	Glu	Lys	Trp 575	Glu
Phe	Pro	Arg	Asn 580	Asn	Leu	Gln	Phe	Gly 585	ГЛа	Thr	Leu	Gly	Ala 590	Gly	Ala
Phe	Gly	Lys 595	Val	Val	Glu	Ala	Thr 600	Ala	Phe	Gly	Leu	Gly 605	Lys	Glu	Asp
	610		-			615	-			-	620		Ala		
625		-			630					635			Ser		640
-				645					650	-		-	Thr	655	
			660					665					Asp 670		
		675			-		680				_	685	Ser		
Pro	Gly 690	Gln	Asp	Pro	Glu	Gly 695	Gly	Val	Asp	Tyr	Lys 700	Asn	Ile	His	Leu
Glu 705	ГÀа	Lys	Tyr	Val	Arg 710	Arg	Asp	Ser	Gly	Phe 715	Ser	Ser	Gln	Gly	Val 720
Asp	Thr	Tyr	Val	Glu 725	Met	Arg	Pro	Val	Ser 730	Thr	Ser	Ser	Asn	Asp 735	Ser
Phe	Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Glu 745	Asp	Gly	Arg	Pro	Leu 750	Glu	Leu
Arg	Asp	Leu 755	Leu	His	Phe	Ser	Ser 760	Gln	Val	Ala	Gln	Gly 765	Met	Ala	Phe
Leu	Ala 770	Ser	Lys	Asn	CÀa	Ile 775	His	Arg	Asp	Val	Ala 780	Ala	Arg	Asn	Val
Leu 785	Leu	Thr	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe	Gly	Leu	Ala 800
Arg	Asp	Ile	Met	Asn 805	Asp	Ser	Asn	Tyr	Ile 810	Val	ГÀз	Gly	Asn	Ala 815	Arg

```
Leu Pro Val Lys Trp Met Ala Pro Glu Ser Ile Phe Asp Cys Val Tyr
            820
                                825
Thr Val Gln Ser Asp Val Trp Ser Tyr Gly Ile Leu Leu Trp Glu Ile
                            840
Phe Ser Leu Gly Leu Asn Pro Tyr Pro Gly Ile Leu Val Asn Ser Lys
                        855
Phe Tyr Lys Leu Val Lys Asp Gly Tyr Gln Met Ala Gln Pro Ala Phe
Ala Pro Lys Asn Ile Tyr Ser Ile Met Gln Ala Cys Trp Ala Leu Glu
Pro Thr His Arg Pro Thr Phe Gln Gln Ile Cys Ser Phe Leu Gln Glu
Gln Ala Gln Glu Asp Arg Arg Glu Arg Asp Tyr Thr Asn Leu Pro Ser
Ser Ser Arg Ser Gly Gly Ser Gly Ser Ser Ser Glu Leu Glu Glu
Glu Ser Ser Ser Glu His Leu Thr Cys Cys Glu Gln Gly Asp Ile Ala
945
                    950
Gln Pro Leu Gln Pro Asn Asn Tyr Gln Phe Cys
<210> SEO ID NO 30
<211> LENGTH: 36
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: primer
     OTG18929
<400> SEQUENCE: 30
gccgccacca tgtacttggg actgaactat gtattc
                                                                      36
<210> SEQ ID NO 31
<211> LENGTH: 29
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: primer
      OTG18930
<400> SEQUENCE: 31
ggagatette atttaccegg agteeggga
                                                                       29
<210> SEQ ID NO 32
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: primer
     OTG18931
<400> SEQUENCE: 32
geegeeacca tgagtgtgee cacteaggte etg
                                                                      33
<210> SEQ ID NO 33
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: primer
     OTG18932
<400> SEQUENCE: 33
```

gcccgggcta acactcattc ctgttgaagc tc	32
<pre><210> SEQ ID NO 34 <211> LENGTH: 705 <212> TYPE: DNA 213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of pTG17895</pre>	Artificial Sequence: plasmid
<400> SEQUENCE: 34	
atgagegtge ccaeccaggt getgggeetg etgetge	etgt ggetgaeega egeeagatge 60
gacatecaga tgacecagag eccegecage etgages	gtga gcgtgggcga gaccgtgacc 120
atcacctgca gggccagcga gaacatctac agcaacc	etgg cetggtatea geagaageag 180
ggcaagagcc cccagctgct ggtgcacgct gccacca	aacc tggccgacgg cgtgccctcc 240
aggttcagcg gcagcggctc cggcacccag tacagcc	etga agatcaacag cetgeagage 300
gaggaetteg geagetaeta etgeeageae ttetgg	ggca ccccaaggac cttcggcggc 360
ggcaccaagc tggagatcaa gaggaccgtg gccgcc	ccca gcgtgttcat cttccccccc 420
agegaegage agetgaagag eggeaeegee teegtge	gtgt gcctgctgaa caacttctac 480
ccccgggagg ccaaggtgca gtggaaggtg gacaacg	gccc tgcagagcgg caacagccag 540
gaaagegtea eegageagga cageaaggae teeacet	taca gcctgagcag caccctgacc 600
ctgagcaagg ccgactacga gaagcacaag gtgtac	geet gegaggtgae eeaccaggge 660
ctgtccagcc ccgtgaccaa gagcttcaac aggggcg	gagt gttga 705
<210> SEQ ID NO 35 <211> LENGTH: 1404 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of pTG17868	Artificial Sequence: plasmid
<400> SEQUENCE: 35	
atgtacctgg gcctgaacta cgtgttcatc gtgtttc	ctgc tgaacggcgt gcagagcgag 60
gtgaagctgg aggaaagcgg cggagggctg gtgcag	ccag gcgggagcat gaaactgtcc 120
tgegeegeea geggetteae etteagegae geetgga	atgg actgggtgcg ccagageeee 180
gagatgggcc tggagtgggt ggccgagatc aggtcca	aagg ccaacaacca cgccaccttc 240
tacgccgaga gcgtgaaggg caggttcacc atcagca	aggg acgacagcaa gagcagcgtg 300
tacctgcaga tgaacagcct gaggcccgag gacaccg	ggca tctactactg caccagagtg 360
aaagtggget tegacaactg gggeeaggge accacac	ctga ccgtgtccag cgccagcacc 420
aagggcccca gcgtgttccc cctggccccc agctcca	aaga gcaccagcgg aggaacagct 480
getetggget geetggtgaa ggaetaette eeegage	cccg tgaccgtgtc ttggaacagc 540
ggagccctga cctccggcgt gcacaccttc cccgccg	gtgc tgcagagcag cggcctgtac 600
agcctgagca gcgtggtgac agtgcccagc agcagcc	ctgg gcacccagac ctacatctgc 660
aacgtgaacc acaagcccag caacaccaag gtggaca	aaga aggtggagcc caagagctgc 720
gacaagaccc acacctgtcc teeetgeeca geeceas	gage tgetgggegg acceteegtg 780
ttcctgttcc cccccaagcc caaggacacc ctgatga	atca gcaggacccc cgaggtgacc 840
tgcgtggtgg tggacgtgtc ccacgaggac ccagagg	gtga agttcaactg gtacgtggac 900

-continued

-continued	
ggcgtggagg tgcacaacgc caagaccaag cccagagagg aacagtacaa cagcacctac	960
agggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa ggaatacaag	1020
tgcaaggtct ccaacaaggc cctgccagcc cccatcgaaa agaccatcag caaggccaag	1080
ggccagccac gggagcccca ggtgtacacc ctgccccct cccgggacga gctgaccaag	1140
aaccaggtgt ccctgacctg tctggtgaag ggcttctacc ccagcgacat cgccgtggag	1200
tgggagagca acggccagcc cgagaacaac tacaagacca ccccccagt gctggacagc	1260
gacggcaget tetteetgta cagcaagetg accgtggaca agagcaggtg gcagcaggge	1320
aacgtgttca gctgcagcgt gatgcacgag gccctgcaca accactacac ccagaagagc	1380
ctgagectgt eeeeeggeaa gtga	1404
<pre><210> SEQ ID NO 36 <211> LENGTH: 1395 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: plasm pTG17869</pre>	id
<400> SEQUENCE: 36	
atgtacetgg geetgaacta egtgtteate gtgtttetge tgaaeggegt geagagegag	60
gtgaagctgg aggaaagcgg cggagggctg gtgcagcctg gaggaagcat gaagctgtcc	120
tgcgctgcca gcggcttcac cttcagcgac gcctggatgg actgggtgcg ccagagccc	180
gagatgggcc tggagtgggt ggccgagatc aggtccaagg ccaaccaacca cgccaccttc	240
tacgccgaga gcgtgaaggg caggttcacc atcagcaggg acgacagcaa gagcagcgtg	300
tacetgeaga tgaacageet gaggeeegag gacaceggea tetaetaetg caceagagtg	360
aaggtggget tegacaactg gggecaggge accacactga eegtgteeag egecageace	420
aagggcccaa gcgtgttccc cctggccccc tgcagcagaa gcaccagcga gagcacagcc	480
geoetggget geetggtgaa ggaetaette eeegageeeg tgaeegtgte ttggaacage	540
ggagccctga ccagcggcgt gcacaccttc cccgccgtgc tgcagagcag cggcctgtac	600
agcetgagea gegtggtgae egtgeeeage ageageetgg geaceaagae etacacetge	660
aacgtggacc acaagcccag caacaccaag gtggacaaga gggtggagag caagtacggc	720
ccaccetgee ectettgeee ageceeegag tteetgggeg gacceagegt gtteetgtte	780
ccccccaagc ccaaggacac cctgatgatc agcaggaccc ccgaggtgac ctgcgtggtg	840
gtggacgtgt cccaggaaga tccagaggtc cagttcaact ggtacgtgga cggcgtggag	900
gtgcacaacg ccaagaccaa gcccagagag gaacagttta acagcaccta cagggtggtg	960
tccgtgctga ccgtgctgca ccaggactgg ctgaacggca aggaatacaa gtgcaaggtc	1020
tecaacaagg geetgeecag etecategaa aagaecatea geaaggeeaa gggeeageea	1080
cgggagcccc aggtgtacac cctgccaccc agccaagagg aaatgaccaa gaaccaggtg	1140
tecetgacet gtetggtgaa gggettetae eecagegaca tegeegtgga gtgggagage	1200
aacggccagc ccgagaacaa ctacaagacc accccccag tgctggacag cgacggcagc	1260
ttetteetgt acageagget gacegtggae aagteeaggt ggeaggaagg caaegtettt	1320
agctgcagcg tgatgcacga ggccctgcac aaccactaca cccagaagag cctgagcctg	1380
agoogoagog ogacgoacga ggoocogoac aaccaccaca cocagaagag cocgagooog	1000

1395

tccctgggca agtga

The invention claimed is:

- 1. An isolated nucleic acid encoding an antibody that specifically binds to human CSF-1R, the antibody comprising
 - a heavy chain variable region comprising
 - (a) a CDR1 comprising the amino acid sequence starting 5 at position 45 and finishing at position 54 of SEQ ID NO:2.
 - (b) a CDR2 comprising the amino acid sequence starting at position 66 and finishing at position 87 of SEQ ID NO:2, and
 - (c) a CDR3 comprising the amino acid sequence starting at position 117 and finishing at position 126 of SEQ ID NO:2; and
 - a light chain variable region comprising
 - (a) a CDR1 comprising the amino acid sequence starting at position 44 and finishing at position 56 of SEQ ID NO:4.
 - (b) a CDR2 comprising the amino acid sequence starting at position 66 and finishing at position 76 of SEQ ID NO:4, and
 - (c) a CDR3 comprising the amino acid sequence starting at position 109 and finishing at position 117 of SEQ ID NO:4.
- 2. The isolated nucleic acid of claim 1, wherein the heavy chain variable region of the antibody comprises the amino 25 acid sequence as set forth in SEQ ID NO:6.
- 3. The isolated nucleic acid of claim 2, wherein the heavy chain variable region of the antibody consists of SEQ ID NO:6.
- **4**. The isolated nucleic acid of claim **1**, wherein the light 30 chain variable region of the antibody comprises the amino acid sequence as set forth in SEQ ID NO:9.
- **5**. The isolated nucleic acid of claim **4**, wherein the light chain variable region of the antibody consists of SEQ ID NO:9.
- **6**. The isolated nucleic acid of claim **2**, wherein the light chain variable region of the antibody comprises the amino acid sequence as set forth in SEQ ID NO:9.
- 7. The isolated nucleic acid of claim 2, wherein the encoded antibody is a chimeric antibody.
- **8**. The isolated nucleic acid of claim **7**, wherein the light chain variable region of the antibody comprises the amino acid sequence as set forth in SEQ ID NO:9.
- 9. The isolated nucleic acid of claim 1, wherein the heavy chain variable region of the antibody comprises the amino 45 acid sequence as set forth in SEQ ID NO:6 modified by the amino acid substitutions K3Q, E5V, M18L, and P90A and wherein the light chain variable region of the antibody comprises the amino acid sequence as set forth in SEQ ID NO:9.

68

- 10. The isolated nucleic acid of claim 1, wherein the heavy chain variable region of the antibody comprises the amino acid sequence as set forth in SEQ ID NO: 6 modified by the amino acid substitutions K3Q, E5V, M18L, K19R, S40A, E42G, M43K R89K, P9OT, I95V, T113L, and L114V, and wherein the light chain variable region of the antibody comprises the amino acid sequence as set forth in SEQ ID NO:9.
- 11. An isolated nucleic acid of encoding an antibody that specifically binds to human CSF-1R, the antibody comprising:
 - a heavy chain variable region comprising the amino acid sequence as set forth in SEQ ID NO:6, and
 - a light chain variable region comprising the amino acid sequence as set forth in SEQ ID NO:9 modified by the amino acid substitutions A9S, E17D, T18R, Q40P, 543A, Q45K, A55E, D56S, Q70D, S72T, K74T, N76S, 580P, S85T, and G100Q.
- 12. An isolated nucleic acid encoding an antibody that specifically binds to human CSF-1R, the antibody comprising:
 - a heavy chain variable region comprising the amino acid sequence as set forth in SEQ ID NO:6, and
 - a light chain variable region comprising the amino acid sequence as set forth in SEQ ID NO:9 modified by the amino acid substitutions A9S, V13A, E17D, T18R, Q40D, K74T, N76S, and 580P.
 - 13. An isolated nucleic acid encoding an antibody that specifically binds to human CSF-1R, comprising:
 - a heavy chain variable region comprising the amino acid sequence as set forth in SEQ ID NO:6, and
 - a light chain variable region comprising the amino acid sequence as set forth in SEQ ID NO:9 modified by the amino acid substitutions A9S, V13A, E17D, T18R, Q40P, S43A, Q45K, V48L, D56S, Q70D, S72T, K74T, N76S, 580P, G84A, S85T, and G100Q.
 - **14**. The isolated nucleic acid of claim **1**, wherein the antibody is a polyclonal antibody, monoclonal antibody, Fab, F (ab')2, Fv, scFv, antigen binding fragment, or diabody.
 - 15. The isolated nucleic acid of claim 14, wherein the antibody is a monoclonal antibody.
 - 16. The isolated nucleic acid of claim 1, wherein the antibody has a binding affinity for human CSF-1R of at least 10^9 M⁻¹.
 - 17. A vector comprising the nucleic acid of claim 1.
 - 18. A kit comprising the vector of claim 17.
 - 19. A composition comprising the vector of claim 17 and a pharmaceutically acceptable carrier.

* * * * *